Prove that General Affine Transformations preserve ratios of lengths

affine-geometrytransformation

Let $A$ be a matrix with determinant 1. Then we call a general affine transformation, a transformation of the form
\begin{align*}
\begin{bmatrix}x'\\y'\end{bmatrix}=A\begin{bmatrix}x\\y\end{bmatrix}+\begin{bmatrix}r\\s\end{bmatrix}
\end{align*}

Let $p_1,p_2,p_3$ be colinear points. Prove that
\begin{align*}
\frac{||p_2-p_1||}{||p_2-p_3||}
\end{align*}

Is preserved under these transformations.

I have been working this proof for some time now. I can break these transformations down into pure translations, rotations, and scalings. Everything works out quite nicely for the translations and the rotations but if I try to prove this using a scaling matrix i.e. a matrix of the form
\begin{align*}
\begin{bmatrix}a&0\\0&1/a\end{bmatrix}
\end{align*}
.

Any help is greatly appreciated.

Best Answer

Since $p_1, p_2$ and $p_3$ are colinear, we can write $\vec{v} = p_2 - p_3$ and $p2 - p_1 = \lambda \vec{v}$ whence $$ \frac{||p_2-p_1||}{||p_2-p_3||} = \lambda $$ Now write the components of $v$ as $(v_x, v_y)$; we have $$ ||p_2-p_3|| = (v_x, v_y) \\ ||p_2-p_1|| = (\lambda v_x, \lambda v_y) $$

Now apply (multiply by) a scaling transformation. Although it is adequate to just use your example, it might be illuminating to use a general matrix $$S = \pmatrix{a & b \\ c & d}$$with $ad-bc = 1$. $$ S (p_2-p_3)= \pmatrix{ a \,v_x + b \,v_y \\ c \,v_x + d \,v_y}\\ S (p_2-p_1) = \pmatrix{ a \lambda \,v_x + b \lambda\,v_y \\ c \lambda\,v_x + d \lambda \,v_y} = \lambda S(p2-p3)\\ $$