Prove that for all positive integers x that $\lceil \log_{3}(x)\rceil \leq \lfloor \log_{2}(x) \rfloor$

ceiling-and-floor-functionsinequalitylogarithmssolution-verification

$$ \implies \text{Let } k_{1} = \lceil{log_{3}(x)}\rceil \text{ and let } k_{2} = \lfloor{log_{2}(x)}\rfloor$$

$$ \implies \text{Then, } 3^{k_{1}} \geq x \text{ and } 2^{k_{2}} \leq x \text{ because of the floor and ceiling.}$$

$$ \implies \text{Since, } 2^{k_{2}} \leq x \text{ we can do the following work:}$$

$$ \implies log_{3}(x) \leq log_{3}(2^{k_{2}}) = k_{2}log_{3}(2) \leq k \text{ since } log_{3}(2) < 1$$

$$ \implies \text{Thus, we can say } log_{3}(x) \leq k_{2}$$

I'm confused on how to continue from here or whether I'm going in the right direction or not. Any help is appreciated, thank you.

Best Answer

Let $m = \lceil \log_3(x) \rceil$ and $n = \lfloor \log_2(x) \rfloor$. Thus $m$ and $n$ are integers, $3^m \ge x > 3^{m-1}$ and $2^{n+1} > x \ge 2^n$. If $n < m$ we'd have $n \le m-1$, and $3^{m-1} < x < 2^{n+1} \le 2^m$, so $(3/2)^m = 3^m/2^m < 3 $. Since $(3/2)^3 = 27/8 > 3$, $m < 3$ and $n < 2$.

Now for $x = 1$, $\lceil \log_3(1) \rceil = 0 = \lfloor \log_2(1) \rfloor$; for $x = 2$, $\lceil \log_3(2) = 1 = \lfloor \log_2(2) \rfloor$; for $x = 3$, $\lceil \log_3(3) = 1 = \lfloor \log_2(3) \rfloor$; for $x \ge 4$, $\lfloor \log_2(x) \rfloor \ge 2$.
So that leaves no possible positive integers $x$ for which we could have $n < m$.