Prove that every Isosceles triangle with two equal sides third side is equal to $c = \pm(a+b)$

geometryprovabilitytriangles

Let $\triangle ABC$ be an isosceles triangle with two equal sides that $AB = AC$ than $\angle AB = \angle AC$ so with law of cosines we can calculate:
$$\cos\theta_{1} = \frac{b^2+c^2-a^2}{2bc}$$
$$\cos\theta_{2} = \frac{a^2+c^2-b^2}{2ac}$$
which than we can prove:
$$\frac{-a^2+b^2+c^2}{2bc} = \frac{a^2-b^2+c^2}{2ac}$$
$$2ac(-a^2+b^2+c^2) = 2bc(a^2-b^2+c^2)$$
$$ac(-a^2+b^2+c^2) = bc(a^2-b^2+c^2)$$
$$c(ab^2-a^3)+ac^3 = c(-b^3+a^2b)+bc^3$$
$$c(ab^2-a^3)+ac^3 – c(-b^3+a^2b)+bc^3 = 0$$
$$c(ab^2-a^3) – c(-b^3+a^2b)+ac^3-bc^3 = 0$$
$$c(b^3+ab^2-a^2b-a^3)+c^3(-b+a) = 0$$
$$-c(-b+a)(a+b-c)(a+b+c) = 0$$
$$c(a+b-c)(a+b+c) = 0$$
$$c= 0 \lor a+b-c = 0 \lor a+b+c=0$$
$$\Longrightarrow$$
$$\frac{-a^2+b^2+0^2}{2b\cdot0} \neq \frac{a^2-b^2+c^2}{2ac}$$
$$\Longrightarrow$$
$$c\neq0$$
$$\Longrightarrow$$
$$c = \pm(a+b)$$

what's wrong in my prove?
any help is appreciated!

Best Answer

Just to get this out of the Unanswered queue (there's an answer in the comments):

$$-c(-b+a)(a+b-c)(a+b+c) = 0$$ $$\color{red}{c(a+b-c)(a+b+c) = 0}$$

You divided by $-b+a$ after assuming the triangle has $a=b$, so your divisor would be zero.