Prove that $DK=DL$

euclidean-geometrygeometryplane-geometry

enter image description here

In $\triangle ABC$ the cevians $AD$,$BE$ and $CF$ are concurrent at the point $O$. $DL\parallel EF$ and $BE$ intersects $DL$ at $K$. How to prove that $DK = DL$.
I applied menelaus theorem twice in the $\triangle KEL$ and got a relation $\frac{DL^2} {DK^2}=\frac{BE} {BK}\cdot \frac{CL} {CE} \cdot \frac{AL} {AE} \cdot \frac{EO} {KO}$ and also tried to use the ratio of similar triangles but no result. any ideas on utilizing the ratio of similar triangles.

Best Answer

Following timon92, we are going to prove $\dfrac{DA}{AJ}=\dfrac{DO}{OJ}$.

enter image description here

Consider the figure (only add point $M$, which is an intersection of lines $EF$ and $BC$), we focus on $\triangle MDJ$, and apply Menelaus's theorem 4 times: \begin{align} \color{blue}{\frac{MB}{BD}}\color{red}{\frac{DA}{AJ}}\frac{JF}{FM}&=1;\tag{1}\\ \color{blue}{\frac{MB}{BD}}\color{orange}{\frac{DO}{OJ}}\color{green}{\frac{JE}{EM}}&=1;\tag{2}\\ \color{purple}{\frac{MC}{CD}}\color{orange}{\frac{DO}{OJ}}\frac{JF}{FM}&=1;\tag{3}\\ \color{purple}{\frac{MC}{CD}}\color{red}{\frac{DA}{AJ}}\color{green}{\frac{JE}{EM}}&=1.\tag{4} \end{align} Combining (1) and (4), and combining (2) and (3), respectively, we obtain \begin{align} \left(\color{red}{\frac{DA}{AJ}}\right)^2 =\left(\color{blue}{\frac{MB}{BD}}\frac{JF}{FM}\color{purple}{\frac{MC}{CD}}\color{green}{\frac{JE}{EM}}\right)^{-1} =\left(\color{orange}{\frac{DO}{OJ}}\right)^2. \end{align}

Related Question