Prove that A is idempotent without using Jordan form

linear algebra

Suppose $A$ is a $n\times n$ matrix with coefficients in a field , and $\operatorname{rank}(A) + \operatorname{rank}(I_n-A) = n$. How to prove $A^2 = A$ without using Jordan form?

What I know :
For any $v$ we have $v = Av + (I_n – A )v$.
Hence $$V = \operatorname{Im}(A) + \operatorname{Im}(I_n – A)$$
Note that
\begin{align}
n &= \operatorname{dim}(V) = \operatorname{dim}(\operatorname{Im}(A) + \operatorname{Im}(I_n – A)) \\
&= \operatorname{dim}(\operatorname{Im}(A)) +\operatorname{dim}(\operatorname{Im}(I_n – A)) – \operatorname{dim}(\operatorname{Im}(A)\cap\operatorname{Im}(I_n – A))\\
& = n – \operatorname{dim}(\operatorname{Im}(A)\cap\operatorname{Im}(I_n – A))
\end{align}

So we have
$V = \operatorname{Im}(A) \oplus \operatorname{Im}(I_n – A)$.

Best Answer

There are also some other facts you can observe about the kernals. As $(I-A)v=0$ implies that $Av=v$, we see that $$\ker(I-A)\subseteq Im(A)$$ and likewise $$\ker(A)\subseteq Im(I-A).$$ This implies that $\ker(I-A)\cap \ker(A)\subseteq Im(A)\cap Im(I-A)=0$, so that by the rank-nullity theorem $$dim(\ker(I-A))+dim(\ker(A))=2n-dim(Im(I-A))-dim(Im(A))=n.$$ Thus $$V=\ker(I-A)\oplus \ker(A)\subseteq Im(A)\oplus Im(I-A)=V,$$

so that $$\ker(I-A)=Im(A),\;\;\;\;\ker(A)=Im(I-A).$$

The first of this implies that $(I-A)A=0$ so that $A-A^2=0$and $A=A^2$ as you desire.