Prove that $_4F_3\left(\frac13,\frac13,\frac23,\frac23;1,\frac43,\frac43;1\right)=\frac{\Gamma \left(\frac13\right)^6}{36 \pi ^2}$

closed-formelliptic integralsgamma functionhypergeometric functionsequences-and-series

I found an interesting problem about generalized hypergeometric series in MO, stating that:

$$\, _4F_3\left(\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3};1,\frac{4}{3},\frac{4}{3};1\right)=\sum_{n=0}^\infty \left(\frac{(\frac13)_k (\frac23)_k}{(1)_k (\frac43)_k}\right)^2=\frac{\Gamma \left(\frac{1}{3}\right)^6}{36 \pi ^2}$$

This numerically agrees, but I found no proof using either elementary properties of hypergeometric functions (e.g. cyclic sum) or classical Gamma formulas (e.g. Dougall formula). I bet it has something to do with modular forms and elliptic $K$ integral, but the exact relation remain elusive.

How to prove this identity? What will be its motivation? Can we generate other Gamma evaluation of high order hypergeometric series using the method of proving it? Any help will be appreciated.

Best Answer

Let $S$ be the given $_4F_3$, then (first equality comes from termwise integration), $$\begin{aligned} S &= -\frac{1}{9}\int_0^1 t^{-2/3} (\log t) {_2F_1}(2/3,2/3;1;t)dt =-\frac{1}{9} \frac{d}{da} \left(\int_0^1 t^{-2/3+a} {_2F_1}(2/3,2/3;1;t)dt \right)_{a=0}\\ &= -\frac{1}{9}\frac{d}{da}\left(\frac{\, _3F_2\left(\frac{2}{3},\frac{2}{3},a+\frac{1}{3};1,a+\frac{4}{3};1\right)}{ a+1/3}\right)_{a=0} \end{aligned}$$

It is easily seen $A=\sqrt{\pi } \Gamma \left(\frac{7}{6}\right)/\Gamma \left(\frac{5}{6}\right)^2$ is the value of the $_3F_2$ at $a=0$ (Dixon). Set $$\begin{aligned} &{d_{2/3}} = \frac{d}{{da}}{\left( {{_3F_2}(\frac{2}{3} + a,\frac{2}{3},\frac{1}{3};1,\frac{4}{3};1)} \right)_{a = 0}} \qquad {d_1} = \frac{d}{{da}}{\left( {{_3F_2}(\frac{2}{3},\frac{2}{3},\frac{1}{3};1 + a,\frac{4}{3};1)} \right)_{a = 0}} \\ &{d_{1/3}} = \frac{d}{{da}}{\left( {{_3F_2}(\frac{2}{3},\frac{2}{3},\frac{1}{3} + a;1,\frac{4}{3};1)} \right)_{a = 0}} \qquad {d_{4/3}} = \frac{d}{{da}}{\left( {{_3F_2}(\frac{2}{3},\frac{2}{3},\frac{1}{3};1,\frac{4}{3} + a;1)} \right)_{a = 0}}\end{aligned}$$

By multivariable chain rule, $$S = A -\frac{1}{3}(d_{1/3}+d_{4/3})\tag{*}$$


In general, derivative of $_pF_q$ with respect to a parameter is intractable. One can only handle them in an ad hoc manner. In our situation, it is well-known that $_3F_2$ at $1$ satisfies certain transformations: two generators are the 1st and 3rd entry here. Using these two entries, we obtain $$\begin{aligned} & \quad _3F_2\left(\frac{2}{3},\frac{2}{3},a+\frac{1}{3};1,a+\frac{4}{3};1\right) \\ &= \frac{\Gamma \left(\frac{2}{3}\right) \Gamma \left(a+\frac{4}{3}\right) \, _3F_2\left(\frac{1}{3},\frac{2}{3},\frac{2}{3}-a;1,\frac{4}{3};1\right)}{\Gamma \left(\frac{4}{3}\right) \Gamma \left(a+\frac{2}{3}\right)} \\ &= \frac{\Gamma \left(\frac{2}{3}\right) \, _3F_2\left(a+\frac{1}{3},a+\frac{2}{3},a+\frac{2}{3};a+1,a+\frac{4}{3};1\right)}{\Gamma \left(\frac{2}{3}-a\right) \Gamma (a+1)} \\ &= \frac{\Gamma \left(-\frac{1}{3}\right) \Gamma \left(a+\frac{1}{3}\right) \Gamma \left(a+\frac{4}{3}\right) \, _3F_2\left(\frac{1}{3},\frac{2}{3},\frac{2}{3};\frac{4}{3},a+1;1\right)}{\Gamma \left(\frac{1}{3}\right)^2 \Gamma \left(a+\frac{2}{3}\right) \Gamma (a+1)}+\frac{\Gamma \left(\frac{1}{3}\right) \Gamma \left(a+\frac{1}{3}\right) \Gamma \left(a+\frac{4}{3}\right)}{\Gamma \left(\frac{2}{3}\right) \Gamma \left(a+\frac{2}{3}\right)^2} \end{aligned}$$

Observe that for all four $_3F_2$ above, their arguments are all like $(2/3,2/3,1/3;1,4/3)$, the only difference is $a$ appears at different places. This reveals why $(2/3,2/3,1/3;1,4/3)$ is special.

Introduce an operational definition: write $x\equiv y$ if $x-y$ is a "linear combination of gamma factors". For example, $x\equiv y$ if $x-y = A$. Now take derivative at $a=0$, we obtain $$\tag{**}d_{1/3}+d_{4/3} \equiv -d_{2/3} \equiv d_{1/3}+2d_{2/3}+d_1+d_{4/3} \equiv -d_1$$ Solving this system gives $$d_1 \equiv d_{2/3} \equiv d_{1/3}+d_{4/3} \equiv 0$$

Thus $d_{1/3}+d_{4/3}$ can be expressed into gamma function, so can $S$ according to $(*)$.

There is no difficulty in making $(**)$ explicit: $$d_{1/3}+d_{4/3}=\left(3-\frac{\pi }{\sqrt{3}}\right) A-d_{2/3}=d_1+d_{1/3}+2 d_{2/3}+d_{4/3}+\frac{1}{6} A \left(\sqrt{3} \pi -9 \log (3)\right)=-d_1+\frac{1}{2} A \left(\pi \sqrt{3}-6+3 \log (3)\right)+\frac{3 \left(3 \sqrt{3}-2 \pi \right) \Gamma \left(\frac{1}{3}\right)^2 \Gamma \left(\frac{7}{6}\right)^2}{\sqrt[3]{2} \pi ^2}$$

Solving gives $d_{1/3}+d_{4/3} = \dfrac{2 \sqrt{\pi } \left(27-4 \sqrt{3} \pi \right) \Gamma \left(\frac{13}{6}\right)}{21 \Gamma \left(\frac{5}{6}\right)^2}$. We also obtain values of $d_1, d_{2/3}$ as by-products.