Prove that $2\text{Area}(\omega) \leq \text{length}(\gamma)\,\text{distance}(\gamma)$

complex-analysisintegrationmultivariable-calculusproof-writingvector analysis

So basically, I am given the following to prove:

Let $+\gamma$ be a positively oriented smooth Jordan arc, and let $\omega$ denote the interior of $+\gamma$. Recall that if $F = (F_1, F_2):D \to \mathbb{R}^2$ is a continuously differentiable vector field in an open set $D$ containing $\omega \cup(+\gamma)$, then

$$\iint_\omega \left(\frac{\partial F_2}{\partial x} – \frac{\partial F_1}{\partial y}\right) dxdy = \oint_{+\gamma}F \cdot \overrightarrow{ds} $$
where the right hand-side is the line-integral of $F$ along the path $+\gamma$.

By suitably choosing $F$, prove that $$ \DeclareMathOperator{\Area}{Area} \DeclareMathOperator{\diameter}{diameter} \DeclareMathOperator{\length}{length} 2\Area(\omega) \leq \diameter(+\gamma) \length(+\gamma)$$
where

$\diameter(+\gamma) = \sup\{|z(s)-z(t)| : s,t \in [a,b]\}$ and $\length(+\gamma) = \int_{a}^{b} |z'(t)| dt$.

The only thing I know so far is that I need to find an $F$ such that $\frac{\partial F_2}{\partial x} – \frac{\partial F_1}{\partial y} =1$ because then $$\iint_{\omega} dxdy = \Area(\omega).$$ However, I do not know where to proceed from there!

Best Answer

I assume that $z$ is $\gamma$ in the definition of $\operatorname{diameter}(+\gamma)$. Without loss of generality, we can assume that $\gamma(a)=(0,0)$ (otherwise, we can translate $\gamma$ until the point $\gamma(a)$ hits the origin).

I would take $\vec{F}=(F_1,F_2)$ with $F_1=-y$ and $F_2=x$, so that $$\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}=2.$$ By Green's theorem, we have $$2\operatorname{Area}(\omega)=\iint_\omega \left(\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right)\ dx\ dy=\oint_{+\gamma}\vec{F}\cdot \vec{dr}.$$ Hence, $$2\operatorname{Area}(\omega)\leq \oint_{+\gamma}\left\vert\vec{F}\cdot \vec{dr}\right\vert\leq \oint_{+\gamma}\left\Vert\vec{F}\right\Vert\ dr.$$ Because $\left\Vert\vec{F}\right\Vert\leq \operatorname{diameter}(+\gamma)$, we conclude that $$2\operatorname{Area}(\omega)\leq \oint_{+\gamma}\operatorname{diameter}(+\gamma)\ dr=\operatorname{diameter}(+\gamma)\oint_{+\gamma}dr=\operatorname{diameter}(+\gamma)\operatorname{length}(+\gamma).$$


This inequality is a quite weak. If we define $\operatorname{radius}(+\gamma)$ to be $$\inf\Big\{r>0:\exists p\in\mathbb{R}^2,\ \forall u\in[a,b],\ \big\vert\gamma(u)-p\big\vert< r\Big\}\,,$$ then we have $$2\operatorname{Area}(\omega)\leq \operatorname{radius}(+\gamma)\operatorname{length}(+\gamma).$$ The equality holds iff $\gamma$ traces a circle (once). You can use Jung's theorem to show that $$2\operatorname{Area}(\omega)\leq \frac{1}{\sqrt{3}}\operatorname{diameter}(+\gamma)\operatorname{length}(+\gamma),$$ which is stronger than the required result, but is still weak. So, it is an interesting question to find the infimum $\lambda_{\min}$ of all $\lambda>0$ such that $$\operatorname{Area}(\omega)\leq \lambda\operatorname{diameter}(+\gamma)\operatorname{length}(+\gamma).$$ We already know that $\lambda_{\min} \leq \frac1{2\sqrt{3}}$.