Prove that $1$ is the supremum of $\frac{n-1}{n+1}$

real-analysissolution-verificationsupremum-and-infimum

My attempt:

Assume $\exists r \in \mathbb{R}$ s.t $1>r\geq\frac{n-1}{n+1} \forall n \in \mathbb{N}$

We know $1-r>0$, by the archimedean property we have $\exists n\in \mathbb{N}$ s.t.:

$$n(1-r)>r+1$$
$$n-rn>r+1$$
$$n-1>rn+r$$
$$\frac{n-1}{n+1}>r$$

so any number less than $1$ can't be an upper bound, $1$ must be the supremum of the set.

Any help in verifying or improving my proof or suggesting better ways to prove this would be appreciated.

Best Answer

We see that if $\frac{n-1}{n+1}>1$ and $n\in\mathbb Z^{+}$, then we get a contradiction: $n<-1.$

Thus we have,

$$0≤\frac{n-1}{n+1}≤1$$

Now, I will show that for any $0<\varepsilon<1$ there exist $n\in\mathbb Z^{+}$, such that

$$\frac{n-1}{n+1}>1-\varepsilon$$

Algebra tells us, we have

$$n>\frac 2\varepsilon-1,\thinspace\text {where}\thinspace \thinspace n\in\mathbb Z^{+}$$

To be more precise, we can take

$$n=\left\lfloor\frac 2\varepsilon\right\rfloor+1$$

Finally we conclude that, if $n=\left\lfloor\frac 2\varepsilon\right\rfloor+1$ then:

$$1-\varepsilon<\frac{n-1}{n+1}≤1,\thinspace \forall \varepsilon \in (0,1)$$

This means,

$$\sup\left\{\frac {n-1}{n+1},\thinspace n\in\mathbb Z^{+}\right\}=1.$$

Related Question