Prove :$\tan^{-1}\left(e^{i\theta}\right)=\frac{n\pi}{2}+\frac{\pi}{4}-\frac{i}{2}\ln\left(\tan\left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right)$

algebra-precalculuscomplex numberscomplex-analysisinverse functionreal-analysis

Prove:
$$\tan^{-1}\left(e^{i\theta}\right)=\frac{n\pi}{2}+\frac{\pi}{4}-\frac{i}{2}\ln\left(\tan\left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right)$$

My Attempt :

Is $\tan^{-1}$ defined for imaginary quantity?

$\tan^{-1}\left(e^{i\theta}\right)=\tan^{-1}\left(\cos\theta + i\sin \theta\right)$

Is there a series expansion for $\tan^{-1}x$?

Best Answer

let

$arctan(e^{i\theta}) = x + iy$,

then

$arctan(e^{-i\theta}) = x - iy$

adding these two, we get

$2 \cdot x = arctan(e^{i\theta}) + arctan(e^{-i\theta}) = arctan(\frac{e^{i\theta} + e^{-i\theta}}{1 - e^{i\theta} \cdot e^{-i\theta}})$

notice that the fraction tends to $\infty$, thus

$2\cdot x = \frac{\pi}{2} + n\pi$

$x = \frac{\pi}{4} + \frac{n\pi}{2}$

solve for imaginary part by subtracting the 2 initial equations