Prove $\sum_\text{cyc}\frac{a+2}{b+2}\le \sum_\text{cyc}\frac{a}{b}$

alternative-proofinequalityrearrangement-inequalitysolution-verification

Prove if $a,b,c$ are positive $$\sum_\text{cyc}\frac{a+2}{b+2}\le \sum_\text{cyc}\frac{a}{b}$$

My proof:After rearranging we have to prove $$\sum_\text{cyc} \frac{b}{b^2+2b} \le \sum_\text{cyc} \frac{a}{b^2+2b}$$

As inequality is cyclic:

let $a\ge b\ge c$ then $$\frac{1}{a^2+2a}\le \frac{1}{b^2+2b}\le \frac{1}{c^2+2c}$$.The rest follows by rearrangement inequality.

The case $a\ge c\ge b$ is analogous.

Thus Proved!

Is it correct?…And any other alternative ways possible?

Best Answer

Your application of rearrangement is correct, in either case, $(a, b, c)$ and $(a^2+a, b^2+b, c^2+c)$ are similarly ordered, so $$\sum_{cyc} \frac{a}{a^2+2a} \leqslant \sum_{cyc} \frac{a}{b^2+2b}$$


For another way, which generalises, consider $$f(x) = \sum_{cyc} \frac{a+x}{b+x}, \quad f'(x) = \sum_{cyc} \frac{b-a}{(b+x)^2} = \sum_{cyc} \frac{b}{(b+x)^2} - \sum_{cyc}\frac{a}{(b+x)^2} \leqslant 0$$ again by Rearrangement. Hence $f$ is decreasing, and $f(0) \geqslant f(2)$

Related Question