Inequality – Prove sqrt((24a+13)/(24a+13bc))+sqrt((24b+13)/(24b+13ca))+sqrt((24c+13)/(24c+13ab))?3

contest-mathholder-inequalityinequalitysymmetric-polynomials

Problem. Let $a,b,c\ge 0: ab+bc+ca>0$ where $a+b+c=3.$

To prove that: $$\sqrt{\frac{24a+13}{24a+13bc}}+\sqrt{\frac{24b+13}{24b+13ca}}+\sqrt{\frac{24c+13}{24c+13ab}}\ge 3.$$
I've tried to use AM-GM, Cauchy-Schwarz but still can not find an appropriate approach.

The big trouble here is equality occuring at $a=b=c=1$ or $b=c=\dfrac{3}{2};a=0.$

I hope to see a good proof. Thank you!

Best Answer

By Holder $$\left(\sum_{cyc}\sqrt{\frac{24a+13}{24a+13bc}}\right)^2\sum_{cyc}\frac{(24a+13bc)(8a^2+5b^2+5c^2+15ab+15ac+6bc)^3}{24a+13}\geq$$ $$\geq\left(\sum_{cyc}(8a^2+5b^2+5c^2+15ab+15ac+6bc)\right)^3=18^3(a+b+c)^6.$$ Thus, after homogenization it's enough to prove that: $$72(a+b+c)^7\geq\sum_{cyc}\frac{(8a^2+8ab+8ac+13bc)(8a^2+5b^2+5c^2+15ab+15ac+6bc)^3}{85a+13b+13c}$$ or $$\sum_{sym}(171028a^{10}+2490111a^9b+2967068a^8b^2+1600092a^7b^3-4387396a^6b^4-3011931a^5b^5)+$$ $$+abc\sum_{sym}(8266537a^7+12968309a^6b+6428895a^5b^2+2236515a^4b^3)+$$ $$+a^2b^2c^2\sum_{sym}(-2141524a^4-32619909a^3b+9027324a^2b^2+15335781a^2bc)\geq0$$ and sibce by Schur $$\sum_{sym}(a^{10}-2a^9b+a^8bc)\geq0,$$ it's enough to prove that $$\sum_{sym}(8094609a^7+12968309a^6b+6428895a^5b^2+2236515a^4b^3)+$$ $$+abc\sum_{sym}(-21471524a^4-32619909a^3b+9027324a^2b^2+15335781a^2bc)\geq0,$$ which is true by AM-GM and Muirhead.