Prove $P\left\{\min(X_1,X_2,\dots,X_n) = X_i\right\} = \frac{\lambda _i}{\lambda_1+\dots+\lambda_n}$ , when $X_i$ is exponentially distributed

exponential distributionlaplace transformprobability

I want to prove :

$P\left\{\min(X_1,X_2,\dots,X_n) = X_i\right\} = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_n}$ when $X_i$ is exponentially distributed with parameter $\lambda_i$
I've made some progress by showing below:

$P(X_i > t) = P(X_1 > t)P(x_2>t)\dots P(X_n > t) = e^{-\lambda_1t}e^{-\lambda_2t}\dots e^{-\lambda_nt} = e^{-(\lambda_1 + \lambda_2 +\dots+ \lambda_n)t}$

but I don't know how to find the exact answer.
I'm sure the for final answer is should use Laplace transform am i right?

Best Answer

Assuming the $\ X_j\ $ are independent, \begin{eqnarray} P\left(\,\min\left(X_1,X_2,\dots,X_n\,\right)=X_i\right)&=&P\left(X_i \le X_j\ \mbox{ for } j\ne i\right)\\ &=& \int_\limits{0}^\infty P\left(t\le X_j\ \mbox{ for } j\ne i\left|X_i=t\right.\right)\lambda_i e^{-\lambda_i t} dt\\ &=& \int_\limits{0}^\infty \prod_\limits{j\ne i}P\left(t\le X_j\right)\lambda_i e^{-\lambda_i t} dt\\ &=& \int_\limits{0}^\infty \lambda_i e^{-\sum_{j=1}^n\lambda_jt} dt\\ &=& \frac{\lambda_i}{\sum_\limits{j=1}^n\lambda_j}\ . \end{eqnarray}

Related Question