Prove or Disprove Inequality for Sum of x_i*x_j

contest-mathinequalityreal-analysistangent-line-method

Problem 1: Let $x_i \ge 0, \, i=1, 2, \cdots, n$ with $\sum_{i=1}^n x_i = \frac12$. Prove or disprove that
$$\sum_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac18.$$

This is related to the following problem:

Problem 2: Let $x_i \ge 0, \, i=1, 2, \cdots, n$ with $\sum_{i=1}^n x_i = \frac12$. Prove that
$$\sum_{1\le i<j\le n}\frac{x_ix_j}{(1-x_i)(1-x_j)}\le \frac{n(n-1)}{2(2n-1)^2}.$$

Problem 2 is in "Problems From the Book", 2008, Ch. 2, which was proposed by Vasile Cartoaje.
See: Prove that $\sum_{1\le i<j\le n}\frac{x_ix_j}{(1-x_i)(1-x_j)} \le \frac{n(n-1)}{2(2n-1)^2}$

Background:

I proposed Problem 1 when I tried to find my 2nd proof for Problem 2.

It is not difficult to prove that
$$\frac{1}{(2n-1)^4} + \frac{16n^2(n-1)^2}{(2n-1)^4}\cdot \frac{x_ix_j}{1-x_i-x_j}
\ge \frac{x_ix_j}{(1-x_i)(1-x_j)}.$$

(Hint: Use $\frac{x_ix_j}{(1-x_i)(1-x_j)}= 1 – \frac{1}{1 + x_ix_j/(1-x_i-x_j)}$
and $\frac{1}{1+u} \ge \frac{1}{1+v} – \frac{1}{(1+v)^2}(u-v)$
for $u = x_ix_j/(1-x_i-x_j)$ and $v=\frac{1}{4n(n-1)}$. Or simply
$\mathrm{LHS} – \mathrm{RHS} = \frac{(4x_ix_jn^2 – 4x_ix_j n + x_i + x_j – 1)^2}{(2n-1)^4(1-x_i-x_j)(1-x_i)(1-x_j)}\ge 0$.)

To prove Problem 2, it suffices to prove that
$$\frac{1}{(2n-1)^4}\cdot \frac{n(n-1)}{2} + \frac{16n^2(n-1)^2}{(2n-1)^4}\sum_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac{n(n-1)}{2(2n-1)^2} $$
or
$$\sum_{1\le i < j \le n} \frac{x_ix_j}{1-x_i-x_j} \le \frac18.$$

For $n=2, 3, 4$, the inequality is true.

For $n=5, 6$, numerical evidence supports the statement.

Any comments and solutions are welcome and appreciated.

Best Answer

Write $p_i = 2x_i$ and note that $\sum_i p_i = 1$. Then

\begin{align*} 1 + \sum_i \frac{p_i^2}{1 - p_i} &= \sum_i \frac{p_i}{1 - p_i} \\ &= \sum_{i,j} \frac{1}{2} \left( \frac{1}{1 - p_i} + \frac{1}{1 - p_j} \right) p_i p_j \\ &\geq \sum_{i,j} \left( \frac{2}{2-p_i-p_j} \right) p_i p_j. \tag{by AM–HM} \end{align*}

Rearranging this inequality, we get

$$ 1 \geq \sum_{i \neq j} \frac{2p_i p_j}{2 - p_i - p_j} = 8 \sum_{i < j} \frac{x_i x_j}{1 - x_i - x_j},$$

completing the proof.