Prove $\left(3, 1+\sqrt{-5}\right)$ is prime ideal of $\mathbb{Z}\left[\sqrt{-5}\right]$

maximal-and-prime-idealsring-theory

How to prove that $(3, 1+\sqrt{-5})$ is prime ideal of $\mathbb{Z}[\sqrt{-5}]$?

attempt 1: use definition

Consider $a, b, c, d, k_1, k_2 \in \mathbb{Z}$ s.t. $$ac-5bd=3k_1+k_2,\, \, ad+bc=k_2.$$ To prove $\exists j_1, j_2 \in \mathbb{Z}$ s.t. $3j_1+(1+\sqrt{-5})j_2=a+b\sqrt{-5}$ or $=c+d\sqrt{-5}$.
This is a bad way.

attempt 2:

To prove $\dfrac{\mathbb{Z}\left[\sqrt{-5}\right]}{\left(3, 1+\sqrt{-5}\right)}$ is integral domain. I know how to work with quotient of polynomial ring but not how to work with quotient of $\mathbb{Z}\left[\sqrt{-5}\right]$.

attempt 3:

$$\mathbb{Z}\left[\sqrt{-5}\right]\cong \mathbb{Z}/\left(x^2+5\right)$$

When we have $\mathbb{Z}/\left(x^2+5\right)$, converting into $\mathbb{Z}\left[\sqrt{-5}\right]$ simplifies the problem. May be the other way round is useless.

Please give a hint. Please do not give solution. Thanks!

Best Answer

$$ \frac{\mathbb{Z}\left[\sqrt{-5}\right]}{\left(3, 1+\sqrt{-5}\right)} \cong \frac{\mathbb{Z}[x]}{\left(3,1+x,x^2+5\right)} \cong \frac{\mathbb{Z}_3[x]}{\left(1+x,x^2-1\right)} \cong \cdots $$

Related Question