Prove $\frac{5abc+1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1\right)+6\ge \sum_{\text{cyc}}\sqrt{5a^3+4}$ when $a^2+b^2+c^2=a+b+c$

algebra-precalculuscauchy-schwarz-inequalityinequalitysymmetric-polynomialsuvw

Question

Let $a,b,c>0: a^2+b^2+c^2=a+b+c.$ Prove that $$\color{black}{\frac{5abc+1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1\right)+6\ge \sqrt{5a^3+4}+\sqrt{5b^3+4}+\sqrt{5c^3+4}}.$$
I've tried to eliminate the radical by Cauchy-Schwarz$$\frac{5abc+1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1\right)+6\ge \sqrt{3}.\sqrt{5(a^3+b^3+c^3)+12}$$
But the rest is not easy to me. I am waiting some ideas and proofs.

Thanks for your help.

Updated editings:
Until now, we recieved two proof by hand verified by Mathematica.
Is there a simpler proof?

Best Answer

Alternative proof.

By given condition, we can rewrite the OP as $$(ab+bc+ca)\left(5+\frac{1}{abc}\right)-5abc+23\ge 4\sum_{\mathrm{cyc}}\sqrt{5a^3+4}.$$ Or $$\frac{ab+bc+ca}{a+b+c}\left[5(a^2+b^2+c^2)+\frac{a^2+b^2+c^2}{abc}\right]-5abc+23\ge 4\sum_{\mathrm{cyc}}\sqrt{5a^3+4},$$ $$\iff\sum_{\mathrm{cyc}}{\left[\left(5a^2+\dfrac{a}{bc}\right)(ab+bc+ca)-5a^2bc+7a+8b+8c\right]}\ge 4(a+b+c)\sum_{\mathrm{cyc}}\sqrt{5a^3+4}.$$ Now, base on symmetrical principle we should try to prove $$\left(5a^2+\frac{a}{bc}\right)(ab+bc+ca)-5a^2bc+7a+8b+8c\ge 4(a+b+c)\sqrt{5a^3+4}. \tag{*}$$ Can you end it now ?


Indeed, the $(*)$ is equivalent to $$\left(5a^2+\dfrac{a}{bc}\right).\frac{a(b+c)}{a+b+c}+8\ge4\sqrt{5a^3+4}.$$ Notice that by AM-GM $$\frac{a(b+c)}{a+b+c}=\frac{1}{\dfrac{1}{a}+\dfrac{1}{b+c}}\ge \frac{2}{\dfrac{2}{a}+\dfrac{1}{\sqrt{bc}}}.$$ Hence, it is enough to prove$$\frac{5a^2+\dfrac{a}{bc}}{\dfrac{2}{a}+\dfrac{1}{\sqrt{bc}}}+4\ge2\sqrt{5a^3+4}.$$ Dividing both side by $a,$ we will prove $$ \frac{\dfrac{1}{bc}+5a}{\dfrac{1}{\sqrt{bc}}+\dfrac{2}{a}}+\dfrac{4}{a}\ge2\sqrt{5a+\dfrac{4}{a^2}}.$$ The last inequality is true by AM-GM$$ \frac{\dfrac{1}{bc}+5a}{\dfrac{1}{\sqrt{bc}}+\dfrac{2}{a}}+\dfrac{4}{a}= \frac{5a+\dfrac{4}{a^2}}{\dfrac{1}{\sqrt{bc}}+\dfrac{2}{a}}+\frac{1}{\sqrt{bc}}+\dfrac{2}{a}\ge2\sqrt{5a+\dfrac{4}{a^2}}.$$ The proof is done. Equality holds at $a=b=c=1.$