Prove convergence of series under trace-norm topology

functional-analysishilbert-spaceslinear algebraoperator-theoryquantum mechanics

Let $H$ be a separable Hilbert space, $T(H)$ the set of trace-class operators, and $D(H)\subset T(H)$ the set of density operators (i.e., positive and having trace 1).

For any unit vector $\vert \alpha \rangle \in H$, consider the pure state $\vert \alpha \rangle\langle \alpha\vert \in D(H)$ represented in a complete orthonormal basis $\vert e_k \rangle $ as $\vert \alpha \rangle\langle \alpha\vert= \sum_{i=1,j=1} c_i c_j^* \vert e_i\rangle \langle e_j \vert$, where $c_i = \langle \alpha \vert e_i\rangle$. Is is possible to prove that this series converges under the trace norm, i.e., that
$$\lim_{n\to \infty} \Big\Vert \vert \alpha \rangle \langle \alpha \vert – \sum_{i=1}^n \sum_{j=1}^n c_i c_j^* \vert e_i\rangle \langle e_j \vert \Big\Vert = 0,$$
where $\Vert \cdot \Vert$ is the trace norm?

If it does not, would it be possible to prove this under e.g., the operator norm topology?

Best Answer

A bit late but here is some work for posterity.

$$\lim_{n\to \infty} \Big\Vert \vert \alpha \rangle \langle \alpha \vert - \sum_{i=1}^n \sum_{j=1}^n c_i c_j^* \vert e_i\rangle \langle e_j \vert \Big\Vert = $$

$$ \lim_{n\to \infty} \Big\Vert \sum_{i=1}^\infty \sum_{j=1}^\infty c_i c_j^* \vert e_i\rangle \langle e_j \vert - \sum_{i=1}^n \sum_{j=1}^n c_i c_j^* \vert e_i\rangle \langle e_j \vert \Big\Vert = $$

$$ \lim_{n\to \infty} \Big\Vert \sum_{i=n+1}^\infty \sum_{j=n+1}^\infty c_i c_j^* \vert e_i\rangle \langle e_j \vert \Big\Vert \leq $$

(Triangle inequality for the trace-norm)

$$ \lim_{n\to \infty} \sum_{i=n+1}^\infty \sum_{j=n+1}^\infty |c_i c_j^*|\Big\Vert \vert e_i\rangle \langle e_j \vert \Big\Vert = $$ ( $\| |e_{i}\rangle \langle e_{j}| \|_{1} = 1$, check i!) $$ \lim_{n\to \infty} \sum_{i=n+1}^\infty \sum_{j=n+1}^\infty |c_i c_j^*| = 0 $$

If the values $|c_{j}| $ form a summable sequence then the last line is obviously true.