Prove : $\arctan(x)>\tanh(x)$ for $0< x\leq 1$

alternative-proofderivativesexponential functioninequalitytrigonometry

It's a classical inequality that I want to propose :

Claim:

Let $0< x\leq 1$ then we have :
$$\arctan(x)>\tanh(x)$$

My proof :

We introduce the function :

$$f(x)=\arctan(x)-\tanh(x)$$

We differentiate :

$$f'(x)=\frac{1}{(x^2+1)}+\frac{-4}{(e^{-x} + e^{x})^2}$$

Remains to show :

$$\frac{(e^{-x} + e^{x})^2}{4}\geq x^2+1\quad \quad (0)$$

Or :

$$-\frac{1}{2}+\frac{e^{-2x}}{4}+\frac{e^{2x}}{4}-x^2\geq 0$$

We introduce the function :

$$g(x)=-\frac{1}{2}+\frac{e^{-2x}}{4}+\frac{e^{2x}}{4}-x^2$$

We differentiate twice :

$$g''(x)=e^{-2x}+e^{2x}-2\geq 0$$

We deduce that the first derivative of $g(x)$ is increasing and $g'(0)=0$ so $g(x)$ is increasing but $g(0)=0$ so we establish the inequality $(0)$ . We conclude that the function $f(x)$ is increasing and $f(0)=0$ wich prove the claim .

My question :

Have you one or more alternative proof (using integration by example)?

Thanks in advance !

Erik

Best Answer

Note $\sinh t-t>0$ and

\begin{align} \arctan x-\tanh x & =\int_0^x \left(\frac{1}{t^2+1}-\frac{1}{\cosh^2 t}\right)dt\\ &= \int_0^x \frac{(\sinh t +t)(\sinh t-t)}{(t^2+1)\cosh^2 t}dt>0 \end{align} Thus, $\arctan x>\tanh x$.

Related Question