Prove a relation of Laguerre polynomials

orthogonal-polynomials

Prove this relation for Laguerre polynomials $L_{n}^{(\alpha)}(x)$:
$$L_{n}^{(\alpha)}(cx)=(\alpha+1)_n\sum_{k=0}^{n}\frac{c^k(1-c)^{n-k}}{(n-k)!(\alpha+1)_k}L_{k}^{(\alpha)}(x).$$

I tried to prove using the generating function of Laguerre polynomials and equating the coefficients of $x^n$ on both sides, but I don't get something that brings this relation.

Have someone any proof or idea?

Best Answer

Using both the closed form representation of the Laguerre polynomials \begin{equation} L_n^{(\alpha)}(x)=\sum_{k=0}^n(-1)^k\binom{n+\alpha}{n-k}\frac{x^k}{k!} \end{equation} and the decomposition \begin{equation} \frac{x^k}{k!}=\sum_{p=0}^k(-1)^k\binom{k+\alpha}{k-p}L_p^{(\alpha)}(x) \end{equation} we have \begin{align} L_n^{(\alpha)}(cx)&=\sum_{k=0}^n(-1)^k\binom{n+\alpha}{n-k}c^k\sum_{p=0}^k(-1)^p\binom{k+\alpha}{k-p}L_p^{(\alpha)}(x)\\ &=\sum_{k=0}^n\sum_{p=0}^k(-1)^{p+k}\binom{n+\alpha}{n-k}\binom{k+\alpha}{k-p}c^kL_p^{(\alpha)}(x) \end{align} But \begin{equation} \binom{n+\alpha}{n-k}\binom{k+\alpha}{k-p}=\frac{\Gamma(n+\alpha+1)}{(n-k)!(k-p)!\Gamma(\alpha+p+1)} \end{equation} and thus \begin{align} L_n^{(\alpha)}(cx)&=\Gamma(n+\alpha+1)\sum_{k=0}^n\sum_{p=0}^k\frac{(-1)^{p+k}}{(n-k)!(k-p)!\Gamma(\alpha+p+1)}c^kL_p^{(\alpha)}(x)\\ &=\Gamma(n+\alpha+1)\sum_{p=0}^n\frac{(-1)^p}{\Gamma(\alpha+p+1)}L_p^{(\alpha)}(x)\sum_{k=p}^n\frac{(-1)^{k}}{(n-k)!(k-p)!}c^k\\ &=\Gamma(n+\alpha+1)\sum_{p=0}^n\frac{(-1)^p}{\Gamma(\alpha+p+1)}L_p^{(\alpha)}(x)\sum_{k'=0}^{n-p}\frac{(-1)^{k'+p}}{(n-p-k')!(k')!}c^{k'+p}\\ &=\Gamma(n+\alpha+1)\sum_{p=0}^n\frac{c^p(1-c)^{n-p}}{\Gamma(\alpha+p+1)(n-p)!}L_p^{(\alpha)}(x) \end{align} which, after introduction of the Pochhammer symbols, gives the desired result: \begin{equation} L_{n}^{(\alpha)}(cx)=(\alpha+1)_n\sum_{p=0}^{n}\frac{c^p(1-c)^{n-p}}{(n-p)!(\alpha+1)_p}L_{p}^{(\alpha)}(x) \end{equation}

Related Question