Prove a dimension relation $\dim S+\dim T<\dim X+\dim(\overrightarrow{S}+\overrightarrow{T})$ when $S\cap T=\emptyset$

affine-geometrylinear algebravector-spaces

The proposition is:

Let $X$ be a finite-dimensional affine space and $S,T$ be subspaces of $X$. If $S\cap T=\emptyset$, then $$\dim S+\dim T<\dim X+\dim(\overrightarrow{S}+\overrightarrow{T}),$$ where
$\overrightarrow{S}$ and $\overrightarrow{T}$ represents the direction of $S$ and $T$, respectively.

My attempt is as follows. Since $\dim S=\dim\overrightarrow{S}, \dim T=\dim\overrightarrow{T}, \dim X=\dim\vec X$, if we could show $\dim(\overrightarrow{S}+\overrightarrow{T})>\dim(\overrightarrow{S}\cap\overrightarrow{T})$, the inequality would be proved by $\dim(\overrightarrow{S}+\overrightarrow{T})\le\dim\vec X$ and the Grassmann relation $\dim(\overrightarrow{S}+\overrightarrow{T})=\dim\overrightarrow{S}+\dim\overrightarrow{T}-\dim(\overrightarrow{S}\cap\overrightarrow{T})$. However, I cannot establish $\dim(\overrightarrow{S}+\overrightarrow{T})>\dim(\overrightarrow{S}\cap\overrightarrow{T})$ from condition $S\cap T=\emptyset$. Worse still, I later realized that even if $S\cap T=\emptyset$, their directions $\overrightarrow{S}$ and $\overrightarrow{T}$ could be the same if $S\parallel T$. Therefore $\dim(\overrightarrow{S}+\overrightarrow{T})=\dim(\overrightarrow{S}\cap\overrightarrow{T})$ in that special case. Could you please help me with the proof (you don't have to follow my unsuccessful attempt)? Thank you very much.

Best Answer

My previous attempt is not in the right direction. Following is the proof I have just figured out.

The inequality is equivalent to $\dim S+\dim T-\dim(\overrightarrow{S}+\overrightarrow{T})<\dim X$ where the left side is equal to $\dim(\overrightarrow{S}\cap\overrightarrow{T})$ due to the Grassmann relation. If we can show $\dim(\overrightarrow{S}+\overrightarrow{T})<\dim X$, then $\dim(\overrightarrow{S}\cap\overrightarrow{T})\le\dim(\overrightarrow{S}+\overrightarrow{T})<\dim X$, which establishes the proposition.

To this end, we need to make use of two facts:

  1. Let $a\in S$ and $b\in T$. Then $S\cap T\ne\emptyset$ is equivalent to $\overrightarrow{ab}\in\overrightarrow{S}+\overrightarrow{T}$.
  2. Let $a\in S$ and $b\in T$. $\overrightarrow{\langle S\cup T\rangle}=\overrightarrow{S}+\overrightarrow{T}+K\vec{ab}$ where $K$ is the field of scalars.

Fact 1. is not hard to prove. A proof of Fact 2. is here.

From fact 1., we can infer that $\overrightarrow{S}+\overrightarrow{T}$ is independent of $K\vec{ab}$. To show this, if $(\overrightarrow{S}+\overrightarrow{T})\cap K\vec{ab}$ contains an element $c\vec{ab}\ne 0$, then $c\ne0$, so we have $\vec{ab}\in (\overrightarrow{S}+\overrightarrow{T})$, which is forbidden by Fact 1., because $S\cap T=\emptyset$. Taking dimension on both sides in Fact 2., we have $\dim\overrightarrow{\langle S\cup T\rangle}=\dim\bigl((\overrightarrow{S}+\overrightarrow{T})+K\vec{ab}\bigr)$. The vector spaces in the parentheses on the right side are independent as we have just shown, so we have $\dim\overrightarrow{\langle S\cup T\rangle}=\dim(\overrightarrow{S}+\overrightarrow{T})+\dim K\vec{ab}=\dim(\overrightarrow{S}+\overrightarrow{T})+1$. $\dim\overrightarrow{\langle S\cup T\rangle}\le\dim\vec X$ in general, so we finally get $\dim(\overrightarrow{S}+\overrightarrow{T})<\dim\vec X$.