Prove $3\int_{0}^{1}\frac{x\arctan x}{3x^2+1}\,\mathrm dx -\int_{0}^{1}\frac{x\arctan x}{x^2+3}\,\mathrm dx =\frac23 G-\frac {\pi}{12}\ln(2+\sqrt{3})$

calculusdefinite integralsintegrationsequences-and-series

Prove that
$$
I
=3\int_{0}^{1}\frac{x\arctan x}{3x^2+1}\,\mathrm dx
-\int_{0}^{1}\frac{x\arctan x}{x^2+3}\,\mathrm dx
=\frac23 G-\frac {\pi}{12}\ln(2+\sqrt{3}).
$$

where, $G$ is catalan's constant

Above two Integrals are a part of a integral which I was trying to solve.

Let $I=3I_{1}-I_{2}$

Attempt:-1

$$I_{1}=\int_{0}^{1}\frac{x\arctan x}{x^2+3}\,\mathrm dx$$

$$\implies I_{1}=\int_{0}^{1}\frac{x}{x^2+3}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1} x^{2n-1}\,\mathrm dx$$

$$\implies I_{1}=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}\int_{0}^{1}\frac{x^{2n}}{x^2+3}\,\mathrm dx.$$

From my previous question 1 we have
$$
\int_{0}^{1}\frac{x^{2n}}{x^{2}+3}\,\mathrm dx
=(-3)^{n}\frac{\pi}{6\sqrt{3}}+\sum_{k=0}^{n-1}\frac{(-3)^{n-1-k}}{2k+1}.
$$

Therefore,
$$
I_{1}=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}\bigg[(-3)^{n}\frac{\pi}{6\sqrt{3}}+\sum_{k=0}^{n-1}\frac{(-3)^{n-1-k}}{2k+1}\bigg],
$$

$$
I_{1}=\sum_{n=1}^{\infty}\sum_{k=0}^{n-1}\frac{(-1)^{2n-k}\space 3^{n-1-k}}{(2k+1)(2n-1)}-\frac{\pi}{6\sqrt{3}}\sum_{n=1}^{\infty}\frac{3^{n}}{2n-1}.
$$

Using Desmos Both of the series diverges so $I_{1}$ is of the form $\infty -\infty$ which have a finite answer. Same thing goes with $I_{2}$.

Attempt:- 2:

Try to convert one integral into another. Substitute $x=\frac{1}{x}$ in $I_{1}$, we get

$$I_{1}=-\frac{3\pi}{2}\int_{1}^{\infty}\frac{x}{x^2+3} \,\mathrm dx
+3\int_{1}^{\infty}\frac{x \space tan^{-1}x}{x^2+3} \,\mathrm dx $$

$$\implies I=-\frac{3\pi}{2}\int_{1}^{\infty}\frac{x}{x^2+3} \,\mathrm dx -\int_{0}^{\infty}\frac{x \space tan^{-1}x}{x^2+3} \,\mathrm dx +4\int_{1}^{\infty}\frac{x \space tan^{-1}x}{x^2+3} \,\mathrm dx$$

Surprisingly all three integrals diverges and convergence of $I$ is maintained by negative and positive sign.

How can I prove the original result?

Thank you for your help!

Best Answer

Integrate by parts and then substitute $x=\tan \frac t2$ \begin{align} I=& \>\int_{0}^{1}\frac{x\arctan x}{x^2+\frac13}\,\mathrm dx -\int_{0}^{1}\frac{x\arctan x}{x^2+3}dx =\frac14 \int_0^{\frac\pi2} \ln\frac{1+\frac12 \cos t}{1-\frac12 \cos t}dt \end{align}

Let $J(a) = \int_0^{\frac\pi2}\ln(1+\cos a\cos t)dt$. Then $$J’(a) =-\tan a\left( \frac\pi2-\int_0^{\frac\pi2}\frac{1}{1+\cos a\cos t}dt\right) =a\sec a-\frac\pi2\tan a $$ and \begin{align} I&= \frac14\left(J(\frac\pi3)-J(\frac{2\pi}3)\right)=-\frac14 \int^{\frac{\pi}2}_{\frac\pi3} J’(a)da - \frac14\int^{\frac{2\pi}3}_{\frac\pi2} \overset{a\to \pi -a}{J’(a)da }\\ &=\frac12 \int_{\frac\pi3}^{\frac\pi2} (\frac\pi2-a)\sec a \>da \overset{a=\frac\pi2 - 2t}=2\int_0^{\frac\pi{12}} t\csc (2t) dt\\ &=- t\ln(\cot t)\bigg|_0^{\frac\pi{12}} + \int_{0} ^{\frac\pi{12}} {\ln(\cot t) dt}\\ &= -\frac\pi{12} \ln(2+\sqrt3)+\frac23 G \end{align} where $\int^{ \frac\pi{12}}_{0} \ln(\cot t)dt= \frac23G$