Properties of condition number for matrix

linear algebra

Fix a norm $\|\cdot\|$ on $\mathbb{R}^{n}$. Define the operator norm by:
\begin{equation}
\|A\|=\max_{x\neq 0}\frac{\|Ax\|}{\|x\|}.
\end{equation}

Then, the condition number for a non-singular $A\in\mathbb{R}^{n\times n}$ is defined by:
\begin{equation}
\kappa(A)=\|A^{-1}\|\|A\|.
\end{equation}

I have proven that $\kappa(A)\geq 1$, $\kappa(Q)=1$ with $Q\in\mathbb{R}^{n\times n}$ being an orthogonal matrix, $\kappa(cA)=\kappa(A)$ for $c\neq 0$, $\kappa(A^{-1})=\kappa(A)$, and $\kappa(AB)\leq\kappa(A)\kappa(B)$ for $B\in\mathbb{R}^{n\times n}$ non-singular.

My question: How do I prove that and $\kappa(QA)=\kappa(AQ)=\kappa(A)$ for $Q$ as above?

Best Answer

A orthogonal matrix $Q$ is satisfies $\|Qx\|=\|x\|$ for all $x$.

Therefore the sets $\{x\in\mathbb R^n:\|x\|=1\}$ and $\{x\in\mathbb R^n:\|Qx\|=1\}$ are equal and so

$$\|A\|=\max_{\|x\|=1}{\|Ax\|}=\max_{\|Qx\|=1}{\|AQx\|}=\max_{\|x\|=1}{\|AQx\|}=\|AQ\|$$

and $$\|A\|=\max_{\|x\|=1}{\|Ax\|}=\max_{\|x\|=1}{\|QAx\|}=\|QA\|$$

so multiplying a matrix by an orthogonal matrix (from the left or the right) does not change it's norm.

Since $Q^{-1}$ is also orthogonal:

$$\kappa(A)=\|A^{-1}\|\|A\|=\|Q^{-1}A^{-1}\|\|AQ\|=\|(AQ)^{-1}\|\|AQ\|=\kappa(AQ)$$ and similary $\kappa(A)=\kappa(QA)$.