Proof that $\operatorname{Spec}(\bar{\mathbb{Q}}\otimes_\mathbb{Q} \bar{\mathbb{Q}})\cong\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$.

algebraic-geometryalgebraic-number-theorycategory-theorynumber theory

I heard that $\operatorname{Spec}(\bar{\mathbb{Q}}\otimes_\mathbb{Q} \bar{\mathbb{Q}})$ is homeomorphic to $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ and so I tried to prove it in the following way:

We write $\bar{\mathbb{Q}}$ as the colimit of its finite Galois extensions. Then,
$$\bar{\mathbb{Q}}\otimes_\mathbb{Q} \bar{\mathbb{Q}}=\bar{\mathbb{Q}}\otimes_\mathbb{Q} \left(\operatorname{colim} L\right)=\operatorname{colim}\bar{\mathbb{Q}}\otimes_\mathbb{Q} L = \operatorname{colim}\prod_{\sigma\in\operatorname{Gal}(L/\mathbb{Q})}\bar{\mathbb{Q}}.$$
It follows that
$$\operatorname{Spec}(\bar{\mathbb{Q}}\otimes_\mathbb{Q} \bar{\mathbb{Q}})=\operatorname{Spec}\left(\operatorname{colim}\prod_{\sigma\in\operatorname{Gal}(L/\mathbb{Q})}\bar{\mathbb{Q}}\right)=\lim \coprod_{\sigma\in\operatorname{Gal}(L/\mathbb{Q})}\operatorname{Spec}\bar{\mathbb{Q}}.$$
Now, let $F$ be the forgetful functor from schemes to topological spaces. We have
$$F(\operatorname{Spec}(\bar{\mathbb{Q}}\otimes_\mathbb{Q} \bar{\mathbb{Q}}))=F\left(\lim \coprod_{\sigma\in\operatorname{Gal}(L/\mathbb{Q})}\operatorname{Spec}\bar{\mathbb{Q}}\right)\overset{?}{=}\lim F\left( \coprod_{\sigma\in\operatorname{Gal}(L/\mathbb{Q})}\operatorname{Spec}\bar{\mathbb{Q}}\right)=\lim \operatorname{Gal}(L/\mathbb{Q})=\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$$
since the limits on the categories of topological spaces and of topological groups coincide (as topological spaces, of course). The problem is that I think $F$ does not preserve limits.

Can this proof be saved?

(I know that there is a similar proof of this result in the MSE, but would like to understand this one better.)

Best Answer

I'm just posting an answer to close this question.

Martin Brandenburg solved it and the result that he cites, that $F$ preserves filtered limits of affine morphisms, is 8.2.9 in EGA IV.3.