Problems about sum of ideals

ring-theory

Let $I_1,I_2,\dots ,I_n$ be ideals of the ring $R$ with $R=I_1+I_2+\cdot\cdot\cdot +I_n$. Show that this sum is direct if and only if $a_1+a_2+\cdot\cdot\cdot+a_n=0$, with $a_i\in I_i$, implies that each $a_i=0$.

Let $n=2$.

($\Rightarrow$) We suppose that $R=I_1\oplus I_2$, that is $R=I_1+I_2$ and $I_1\cap I_2=\{0\}$. Let $x\in R$, then $x$ can be written in a unique way as $x=a_1+a_2$, where $a_1\in I_1$ and $a_2\in I_2$.

If $x=a_1+a_2=0$, then $a_1=-a_2\in I_1$. So the only possibility since $I_1\cap I_2=\{0\}$ is $a_1=a_2=0$.

$(\Leftarrow)$ I do not know how to proceed in this verse. Could you give me a suggestion? Thanks!

Best Answer

For ($\Leftarrow$) take $x \in I_1 \bigcap I_2$. Then -x $\in I_1 \bigcap I_2$. So x + (-x) = 0. By hypothesis, x = 0.

Related Question