Problem on continuous functions

continuityepsilon-deltareal-analysissolution-verification

I am self-learning Real Analysis from the text, Understanding Analysis by Stephen Abbott. I'd like someone to verify my solution to exercise problem 4.3.6, and comment on whether my work checks out and if there are no technical mistakes. Also, any hints on how to proceed with (d)?

[Abbott, 4.3.6] Provide an example of each or explain why the request is impossible.

(a) Two functions $\displaystyle f$ and $\displaystyle g$, neither of which is continuous at $\displaystyle 0$, but such that $\displaystyle f( x) g( x)$ and $\displaystyle f( x) +g( x)$ are continuous at $\displaystyle 0$.

(b) A function $\displaystyle f( x)$ continuous at $\displaystyle 0$ and $\displaystyle g( x)$ not continuous at $\displaystyle 0$ such that $\displaystyle f( x) +g( x)$ is continuous at $\displaystyle 0$.

(c) A function $\displaystyle f( x)$ is continuous at $\displaystyle 0$ and $\displaystyle g( x)$ not continuous at $\displaystyle 0$, such that $\displaystyle f( x) \cdot g( x)$ is continuous at $\displaystyle 0$.

(d) A function $\displaystyle f( x)$ not continuous at $\displaystyle 0$ such that $\displaystyle f( x) +\frac{1}{f( x)}$ is continuous at $\displaystyle 0$.

(e) A function $\displaystyle f( x)$ not continuous at $\displaystyle 0$ such that $\displaystyle [ f( x)]^{3}$ is continuous at $\displaystyle 0$.

Solution.

(a) Consider

\begin{equation*}
\begin{array}{ c c }
f( x) & =\begin{cases}
x^{2} +3 & \text{if } x\neq 0\\
2 & \text{if } x=0
\end{cases}\\
g( x) & =\begin{cases}
x+2 & \text{if } x\neq 0\\
3 & \text{if } x=0
\end{cases}
\end{array}
\end{equation*}

Then, $\displaystyle \lim _{x\rightarrow 0}[ f( x) +g( x)] =\lim _{x\rightarrow 0}\left( x^{2} +x+5\right) =5$. Moreover, $\displaystyle f( 0) +g( 0) =5$. Also, $\displaystyle \lim _{x\rightarrow 0} f( x) \cdot g( x) =\lim _{x\rightarrow 0}\left( x^{2} +3\right)( x+2) =6$ and $\displaystyle f( 0) \cdot g( 0) =6$.

(b) This request is impossible. Assume that $\displaystyle f( x) +g( x)$ is continuous at $\displaystyle 0$ and $\displaystyle f( x)$ is continuous at $\displaystyle 0$. Therefore, $\displaystyle \lim _{x\rightarrow 0} f( x) +g( x) =f( 0) +g( 0)$ and $\displaystyle \lim _{x\rightarrow 0} f( x) =f( 0)$. So, $\displaystyle \lim _{x\rightarrow 0} g( x) =\lim _{x\rightarrow 0} f( x) +g( x) -f( x) =\lim _{x\rightarrow 0}( f( x) +g( x)) -\lim _{x\rightarrow 0} g( x) =f( 0) +g( 0) -f( 0) =g( 0)$. Consequently, $\displaystyle g( x)$ is continuous at $\displaystyle 0$.

(c) Consider $\displaystyle f( x) =x$, $\displaystyle g( x) =\frac{1}{x}$. Then, $\displaystyle f( x) \cdot g( x) =1$ which is continuous at $\displaystyle 0$.

(d) $\star$ TODO. I can't think of an example here.

(e) This request is impossible. Assume that $\displaystyle f( x)$ is not continuous at $\displaystyle 0$. So, there exists $\displaystyle \epsilon >0$, for all $\displaystyle \delta >0$, such that whenever $\displaystyle | x| < \delta $, we have $\displaystyle | f( x) -f( 0)| >\epsilon $.

Consider the distance $\displaystyle \left| f( x)^{3} -f( 0)^{3}\right| =| f( x) -f( 0)| \cdot \left| f( x)^{2} -f( x) \cdot f( 0) +f( 0)^{2}\right| $.

\begin{equation*}
\begin{array}{ r l }
\left| f( x)^{3} -f( 0)^{3}\right| & =| f( x) -f( 0)| \cdot \left| f( x)^{2} -f( x) \cdot f( 0) +f( 0)^{2}\right| \\
& =| f( x) -f( 0)| \cdot \left| \left( f( x) -\frac{f( 0)}{2}\right)^{2} +\frac{3}{4} f( 0)^{2}\right| \\
& \geq \frac{3}{4} f( 0)^{2} \cdot | f( x) -f( 0)| =\frac{3}{4} f( 0)^{2} \cdot \epsilon
\end{array}
\end{equation*}

So, there exists an $\displaystyle \epsilon '=\frac{3}{4} f( 0)^{2} \cdot \epsilon $, for all $\displaystyle \delta >0$, such that whenever $\displaystyle | x| < \delta $, we have $\displaystyle \left| f( x)^{3} -f( 0)^{3}\right| >\epsilon '$.

Consequently, $\displaystyle [ f( x)]^{3}$ is not continuous at $\displaystyle 0$.

Best Answer

(a) That's fine.

(b) That's also fine.

(c) Since $g$ is undefined at $0$, it's neither continuous nor discontinuous there. Take $f(x)=0$ and let $g$ be any function discontinuous at $0$.

(d) Take$$f(x)=\begin{cases}2&\text{ if }x\geqslant0\\\frac12&\text{ otherwise.}\end{cases}$$Then $f$ is discontinuous at $0$, but $f+\frac1f$ is constant.

(e) Simply use the fact that $x\mapsto\sqrt[3]x$ is continuous and that if a function $g$ is continuous at $a$ and a function $g$ is continuous at $f(a)$, then $g\circ f$ is also continuous at $a$.