Probability of picking at least 3 green balls and atmost 1 red and 1 orange ball from 4 different balls in 6 tries

binomial distributionmultinomial-distributionprobability

Few days ago I asked almost same question about 3 or more and atmost 1 red balls and thanks to very helpful answers I can calculate any kind of combinations using only two different items(balls).

Now I am facing problem with generalizing this approach. E.I. how this formula $$p=\sum_{j=3}^6 P(\text{green$=j$ and red$=0$})+\sum_{j=3}^5 P(\text{green$=j$ and red$=1$}).$$

transform for the case where ${green}\ge3, \text{red}\le1,\text{orange}\le1$ is required.

Calculating "static" values (E.I ${green}=2, red=1, orange=1$) is breeze with multinomial distribution but these cumulative values really trips me off

Best Answer

In my opinion, the key to this problem is to forgo elegance and count, focusing directly on the # of green balls selected.

Probability of picking at least 3 green balls and at most 1 red and 1 orange ball from 4 different balls in 6 tries

My answer will be

$$ \frac{N\text{(umerator)}}{D\text{(enominator)}}.$$

Clearly,

$$D = 4^6.$$

I will compute various numerators $N_1, N_2, N_3, N_4$. Then

$$N = N_1 + N_2 + N_3 + N_4.$$

Assume that the colors are represented by G,R,O, and B (for black).
On each line below, the number of ways that a distribution can occur will be counted.

$\underline{\text{3 Greens} : N_1}$

GGGBBB : $~ \binom{6}{3}.$
GGGBBR : $~ \binom{6}{3} \times 3.$
GGGBBO : $~ \binom{6}{3} \times 3.$
GGGBRO : $~ \binom{6}{3} \times 3!.$
$$N_1 = \binom{6}{3} \times 13.$$

$\underline{\text{4 Greens} : N_2}$

GGGGBB : $~ \binom{6}{4}.$
GGGGBR : $~ \binom{6}{4} \times 2.$
GGGGBO : $~ \binom{6}{4} \times 2.$
GGGGRO : $~ \binom{6}{4} \times 2.$
$$N_2 = \binom{6}{4} \times 7.$$

$\underline{\text{5 Greens} : N_3}$

GGGGGB : $~ \binom{6}{5}.$
GGGGGR : $~ \binom{6}{5}.$
GGGGGO : $~ \binom{6}{5}.$
$$N_3 = \binom{6}{5} \times 3.$$

$\underline{\text{6 Greens} : N_4}$

GGGGGG : $~ \binom{6}{6}.$
$$N_4 = \binom{6}{6} \times 1.$$

final answer:

$$\frac{ \left[\binom{6}{3} \times 13\right] ~+~ \left[\binom{6}{4} \times 7\right] ~+~ \left[\binom{6}{5} \times 3\right] ~+~ \left[\binom{6}{6} \times 1\right] } {4^6}. $$