Prime and Maximal Ideals of $\mathbb{Z}[\sqrt{-10}]$

idealsmaximal-and-prime-idealsquadratic-integer-ringsring-theory

I want to solve the following questions:

For $R = \mathbb{Z}[\sqrt{-10}]$ and $I = (\sqrt{-10})$

I ) Is $I$ a prime ideal?

II) Is $I$ a maximal ideal?

This is equivalent to asking if $\frac{R}{I}$ an integral domain and a field

I see that $\mathbb{Z}[\sqrt{-10}] = \{x+y \sqrt{-10} \ | \ x,y \in \mathbb{Z}\}$ and $(\sqrt{-10})= \{-10x+y \sqrt{-10} \ | \ x,y \in \mathbb{Z}\}$. But does it then follow that $\frac{R}{I} \cong \mathbb{Z}$? How can I show it?

Best Answer

Note that, $\mathbb Z[\sqrt{-10}] \cong \mathbb Z[x] / \langle {x^2+10} \rangle$ By homomorphism from $\mathbb Z[x]$ into $\mathbb Z[\sqrt{-10}]$, defined as $ x\mapsto \sqrt{-10}$

So,

$\mathbb Z[\sqrt{-10}]/ \langle{\sqrt{-10}}\rangle \cong \mathbb Z[x] / I$,

Where, $ I=\langle {x,x^2+10} \rangle$

And note that, $x \in I \Rightarrow x^2 \in I \Rightarrow 10\in I$

So we have, $I=\langle {x,10} \rangle$

And, $\mathbb Z[x] / I \cong \mathbb Z_{10}[x]/ \langle{x}\rangle \cong \mathbb Z_{10}$