$PQ = 0 \Leftrightarrow P(H) \bot Q(H)$ if $H$ is Hilbert and $P,Q$ orthogonal projections.

functional-analysishilbert-spacesinner-productsoperator-theoryprojection

Exercise :

Let $H$ be a Hilbert space and $P,Q \in \mathcal{L}(H)$ orthogonal projections. Show that :
$$PQ = 0 \Leftrightarrow P(H) \bot Q(H)$$

Attempt-Thoughts :

$(\Rightarrow)$ Let $PQ = 0$. Since $P,Q$ are orthogonal projections, $P$ and $Q$ are self-adjoint.

Let $h \in H$. We'll examine the operation of $h$ under $P$ and $Q$, as :

$$\langle P(h), Q(h) \rangle = \langle h,P^*Q(h)\rangle = \langle h, PQ(h) \rangle = 0 \implies P(h) \bot Q(h)$$
Since $h$ is arbitrary, this means that $P(H) \bot Q(H)$.

$(\Leftarrow)$ Let $P(H) \bot Q(H)$. Then, for $ h \in H$, it is :
$$\langle P(h),Q(h)\rangle = 0 \Leftrightarrow \langle h,P^*Q(h)\rangle = 0 \Leftrightarrow \langle h,PQ(h)\rangle =0 \implies PQ \equiv 0$$

Is my approach rigorous enough and correct ?

Best Answer

You need to take two different elements $h_1$ and $h_2$, but otherwise this is correct.