Power-mean Inequality: Prove that for positive reals $a$, $b$, $c$ we have $3(a+b+c) \ge 8\sqrt[3]{abc} + \sqrt[3]{\frac{a^3+b^3+c^3}{3}}$.

contest-mathinequality

Taiwan Quiz 2014:

Prove that for positive reals $a$, $b$, $c$ we have

$$3(a+b+c) \ge 8\sqrt[3]{abc} + \sqrt[3]{\frac{a^3+b^3+c^3}{3}}$$

Applying Power-mean inequality (weighted) in $$a_1={abc} , a_2={\frac{a^3+b^3+c^3}{3}}$$ with $r=1$, $s=\dfrac{1}{3}$ and weights $\dfrac{8}{9}, \dfrac{1}{9}$ respectively, we get

\begin{align}
P(1) &\ge P\left(\frac{1}{3} \right) \\
\frac{8}{9}\cdot {abc} +\frac{1}{9}\cdot {\frac{a^3+b^3+c^3}{3}} & \ge
\left(
\frac{8}{9}\sqrt[3]{abc}+
\frac{1}{9}\sqrt[3]{\frac{a^3+b^3+c^3}{3}}
\right)^3 \tag{1}
\end{align}

In the book it says this simplifies into

$$a^3 +b^3 +c^3 +24abc \le (a+b+c)^3$$

which is true by $AM \ge GM$, we get on $2$ terms

$$8abc\le(a+b)(b+c)(c+a) \tag{2}$$

Can someone explain me how the simplification happened from $(1)$ to $(2)$?

Best Answer

From (1), we have $$27(24abc + a^3 + b^3 + c^3) \ge \left(8\sqrt[3]{abc} + \sqrt[3]{\frac{a^3+b^3+c^3}{3}}\right)^3.$$ Thus, it suffices to prove that $$[3(a+b+c)]^3 \ge 27(24abc + a^3 + b^3 + c^3)$$ or $$(a+b+c)^3 \ge 24abc + a^3 + b^3 + c^3.$$

Related Question