Positive elements in a $C^\ast$-algebra

c-star-algebrasfunctional-analysis

I was going over some results from a class I finished, and I am stuck on the following in $\color{red}{\textrm{red}}$:

The main definition:

Definition: A self-adjoint element in a $C^\ast$-algebra is called \emph{positive} if $\sigma(a)\subset[0,\infty)$. If $a$ is positive we'll write $a\geq0$, and we let $A^+=\{a\in A:a\geq0\}$.

The lemma I am stuck on (well, proof of the lemma):

Lemma: Suppose that $A$ is a $C^\ast$-algebra.

  • If $a\in A$ is self-adjoint and $\|a\|\leq1$, then $a\geq0$ if and only if $\|\mathbf{1}_A-a\|\leq1$ (in $\tilde{A}$).

Proof. Let $D=C^\ast(\{\mathbf{1}_A,a\})\subset\tilde{A}$. Let $\Psi\colon C(\sigma(a))\to D$ be the functional calculus map. Since $\|a\|=\rho(a)=\|\hat{a}\|_\infty$,
$$
\color{red}{\textrm{$\sigma(a)\subset[-1,1]$}}.
$$

But $\|\textbf{1}-a\|=\|1-\text{id}\|_\infty$ on $\sigma(a)$. Thus $\|\textbf{1}-a\|\leq1$ if and only if $\sigma(a)\subset[0,1]$. This finishes the proof.


It must come from the assumption that $\|a\|\leq1$ and by functional calculus, but I don't see how.

Best Answer

$a$ is self-adjoint, so $\sigma(a)\subseteq \mathbb{R}$. Also, $\sigma(a)\subseteq \{\lambda\in \mathbb{C}: |\lambda|\le \|a\|\}\subseteq \{\lambda\in \mathbb{C}: |\lambda|\le 1\}$. Combining these two inclusions, you find $\sigma(a)\subseteq [-1,1]$.

Related Question