P.Lax’s textbook functional analysis: Chap 4.2 Banach limit, Theorem 3.

functional-analysislinear algebrareal-analysis

P.Lax's textbook functional analysis: Chap 4.2 Banach limit, Theorem 3. I am confused about the proof of (iv): the generalized limit LIM $a_n$, so that
$$\liminf a_n \leq LIM a_n\leq \limsup a_n.$$

The textbook claims that the expression $p((a_n))=\limsup a_n$ applied to $l((a_n))$ and $l(-(a_n))$ where is the linear functional of convergent sequence(classical limit):
$$-p(-(a_n))\leq l((a_n))\leq p((a_n))$$

My question: By the Hahn-Banach theorem, do we get the $LIM (x)\leq p(x)$? Then we have
$$LIM((a_n))\leq \limsup a_n$$
So
$$LIM(-(a_n))\leq \limsup -a_n=-\liminf a_n$$
So
$$-LIM(-(a_n))\geq \liminf a_n$$?

Is it right?

I do not why Yiorgos S. Smyrlis does this way?
Banach Limit: understanding this step in the proof

Best Answer

One way to get $LIM(x)\le p(x)$ is as follows:

$LIM$ is a linear functional with norm $1,$ such that if $x=(x_n)_n$ is convergent then $LIM(x)=\lim_n x_n.$

Let $x'=(x'_n)_n$ where $x'_n=\|x\|+x_n,$ so $x'_n\ge 0$ for all $n.$

For any $r>0$ define $y(r)=(y_n(r))_n$ and $x''(r)=(x''_n(r))_n$ by letting $y_n(r)=x'_n$ and $x''_n(r)=0$ if $x'_n\ge \|x\|+p(x)+r;$ while letting $y_n(r)=0$ and $x''_n(r)=x'_n$ if $x'_n<\|x\|+p(x)+r.$

Now $x'=y(r)+x''(r),$ but $\{n:y_n(r)\ne 0\}$ is finite, so $LIM(y(r))=0.$ So $$\|x\|+LIM(x)=LIM(x')=LIM(y(r)+x''(r))=LIM(x''(r))\le$$ $$\le \|x''(r)\|\le \|x\|+p(x)+r.$$ The last inequality comes from $\forall n\;(\,0\le x''_n<\|x\|+p(x)+r\,).$

Hence $LIM(x)\le p(x)+r$ for all $r>0,$ so $LIM(x)\le p(x).$

Related Question