( P ∨ Q ) ∧ R ⊢ (P ∧ R) ∨ (Q ∧ R) with Natural Deduction

logic

Learning the rules for Natural Deduction. I proved the following statement with the following proof :

( P ∨ Q )  ∧ R ⊢ (P ∧ R) ∨ (Q ∧ R)
( P ∨ Q )  ∧ R ⊢ (P ∧ R) ∨ (Q ∧ R)

1. ( P ∨ Q )  ∧ R        -  Assumption 0
2. ( P ∨ Q )             -  ∧ - Elimination - 1
3.     R                 -  ∧ - Elimination - 1
4.     P                 -  ∨ - Elimination - 2
5.     Q                 -  ∨ - Elimination - 2
6.   P ∧ R               -  ∧ - Introduction - 3,4
7.   Q ∧ R               -  ∧ - Introduction - 5,3
8. (P ∧ R) ∨ (Q ∧ R)     -  ∨ - Introduction - 6,7

However, looking at the model answer the proof is given as

(b) One direction of a distribution law:

$$[(p \lor q) \land r \vdash(p \land r) \lor(q \land r)]$$
\begin{array}{l|lr}\hline
1 & (p \vee q) \land r & \text { assumption, 0 } \\
2 & p \lor q & \land-\mathrm{E}, 1 \\
3 & r & \land-\mathrm{E}, 1 \\
4 & p \vdash(p \land r) \lor(q \land r) & \\
4.1 & p & \text { assumption, 4 } \\
4.2 & p \land r & \land-\mathrm{I}, 4.1,3 \\
4.3 & (p \land r) \lor(q \land r) & \lor-\mathrm{I}, 4.2 \\
5 & p \implies((p \land r) \lor(q \land r)) & \implies-1,4 \\
6 & q \vdash(p \wedge r) \vee(q \wedge r) & \\
6.1 & q & \text { assumption, 6 } \\
6.2 & q \land r & \land-\mathrm{I}, 6.1,3 \\
6.3 & (p \land r) \lor(q \land r) & \lor-\mathrm{I}, 6.2 \\
7 & q \implies((p \land r) \lor(q \land r)) & \implies-1,6 \\
8 & (p \land r) \lor(q \land r) & \lor-\mathrm{E}, 2,5,7
\end{array}

Are both proofs valid, or is mine incorrect? The second proof appears far more elaborate

Best Answer

Your proof is definitely not correct. To be precise: lines 4 and 5 are incorrect.

You basically try to infer $P$ from $P \lor Q$, that that does not follow. If I tell you that my shirt is either red or blue, can you infer that it is therefore red? No.

Related Question