Order the basis of a Lie algebra so that multiplication is increasing

graded-ringslie-algebrasmatricesorder-theorytensors

Let $\frak{g}$ be an arbitrary Lie algebra over a field $K$ with a fixed basis $e_1,\ldots,e_m$. Is it possible to impose a total order $e_1<\ldots<e_m$, so that
$$\forall e_i\!<\!e_j\: \forall e_k\!\in\![e_i,e_j]: e_i<e_j\leq e_k?\tag{1}$$
In other words, is it always possible to permute the basis elements of $\frak{g}$ so that whenever $[e_i,e_j]=\alpha_1e_{k_1}\!+\!\ldots\!+\!\alpha_re_{k_r}$, where $\alpha_1,\ldots,\alpha_1\in K$ are the structure constants, there holds $e_j\leq e_{k_1},\ldots,e_{k_r}$?

If not, I'd appreciate a counterexample. If yes, a procedure to find this order is desired.


Remarks

The condition I wish to satisfy reminds me of $\mathbb{Z}$-graded Lie algebras: $\mathfrak{g}=\bigoplus_{i\in\mathbb{Z}}\mathfrak{g}_i$ such that $[\mathfrak{g}_i,\mathfrak{g}_j]\subseteq \mathfrak{g}_{i+j}$. Indeed, if $\mathfrak{g}$ admits a $\mathbb{N}$-grading and $[e_i,e_j]=0$ for all $e_i\neq e_j\in\mathfrak{g}_0$, then if we impose any order on each $\mathfrak{g}_i$ and let $\mathfrak{g}_0<\mathfrak{g}_1<\mathfrak{g}_2<\ldots$, the property (1) is satisfied. Thus the Lie algebras $\mathfrak{sol}_n=\langle e_{uv}; 1\!\leq\!u\!\leq\!v\!\leq\!n\rangle$ and $\mathfrak{nil}_n=\langle e_{uv}; 1\!\leq\!u\!<\!v\!\leq\!n\rangle$ of all (strictly) upper triangular matrices, with grading $\deg e_{uv}=v-u$, admit $(1)$.

Best Answer

The Lie algebra $\mathfrak{gl}_2=\langle e_{11},e_{12},e_{21},e_{22}\rangle$ is a counterexample. If $e_{12}<e_{21}$, then by multiplication, $e_{12}<e_{21}<e_{11},e_{22}$, but then $[e_{12},e_{22}]=e_{22}$ does not satisfy (1). If $e_{21}<e_{12}$, then by multiplication, $e_{21}<e_{12}<e_{11},e_{22}$, but then $[e_{21},e_{11}]=e_{21}$ does not satisfy (1).


Using @darijgrinberg's comments, I've found on Wiki, that $\frak{g}$ is solvable iff there is a finite sequence of subalgebras $\mathfrak{a}_{i}$ of $\mathfrak{g}$, such that: $$\mathfrak{g}=\mathfrak{a}_0\supset \mathfrak{a}_1\supset ...\supset \mathfrak{a}_m=0,\quad \dim \mathfrak{a}_i/\mathfrak{a}_{i+1}=1,\;\; \mathfrak{a}_{i+1}\text{ is an ideal in }\mathfrak {a}_{i},\;\;\forall i.$$ This corresponds precisely to my condition (1): $e_i$ is the basis element of $\mathfrak{g}_i/\mathfrak{g}_{i+1}$.

Related Question