$\operatorname{Aut}(\mathbb Q^*)$ =

abstract-algebragroup-theory

Group $\mathbb Q^*$ is rationals without $0$ under multiplication.

From this question we know
$\mathbb Q^*\cong \mathbb Z_2 \times \bigoplus_{i=1}^{\infty} \mathbb Z$.

So what is $\text{Aut}(\mathbb Z_2 \times \bigoplus_{i=1}^{\infty} \mathbb Z)$?

Update:

One of my classmates told me that every element in $\operatorname{Aut}(\mathbb Z_2 \times \bigoplus_{i=1}^{\infty} \mathbb Z)$ is one-to-one correspond to ordered pairs $(\theta,\phi)$, $\theta \in \operatorname{Aut}(\bigoplus_{i=1}^{\infty} \mathbb Z)$, and $\phi \in \operatorname{Hom}(\bigoplus_{i=1}^{\infty} \mathbb Z, \mathbb Z_2 )$.

All $\phi $ is $\bigotimes_{i=1}^{\infty} \mathbb Z_2$, but all $\theta$ is rather complicated, is part of $ \bigotimes_{i=1}^{\infty} (\bigoplus_{i=1}^{\infty} \mathbb Z)$, is all invertible elements in this ring: matrix in $\mathbb Z^{\infty \times \infty} $ with every column only finite matrix element nonzero.

Are these correct?

Best Answer

If we consider instead $\mathbb{Z}/2\mathbb{Z}\times F$, where $F$ is a free abelian group on a countable basis, the endomorphism ring can be represented as $$\DeclareMathOperator{\Hom}{Hom}\DeclareMathOperator{\End}{End} \begin{bmatrix} \End(\mathbb{Z}/2\mathbb{Z}) & \Hom(F,\mathbb{Z}/2\mathbb{Z}) \\ \Hom(\mathbb{Z}/2\mathbb{Z},F) & \End(F) \end{bmatrix}= \begin{bmatrix} \End(\mathbb{Z}/2\mathbb{Z}) & \Hom(F,\mathbb{Z}/2\mathbb{Z}) \\ 0 & \End(F) \end{bmatrix} $$ An endomorphism is invertible if and only if both components in the diagonal are invertible, as it easy to show.

Now, as rings, $\End(\mathbb{Z}/2\mathbb{Z})=\mathbb{Z}/2\mathbb{Z}$, so an automorphism has $1$ in the top left corner.

The group of automorphisms is therefore $\Hom(F,\mathbb{Z}/2\mathbb{Z})\times\operatorname{Aut}(F)$ with the operation $$ (f_1,g_1)(f_2,g_2)=(f_2+f_1g_2,g_1g_2) $$

Related Question