One Point Compactification – Why just one

general-topology

I'm reading about one point compactifcation in Munkres. I follow the proof saying that locally compact Hausdorff spaces have one point compactifications. However, I don't understand why the compactification only needs to be one point. Does the same idea work for finitely many added points (or even adding in countably many, or arbitrary amount of points) and assigning the appropriate topology?

Best Answer

It does not need one point. One point suffices to compactify a locally compact space. A compactification can add a lot of extra points (extreme examples are some Cech Stone compactifications) but locally compact spaces are special because they alone have a "minimal compactification". Having only one point in this so-called "remainder" (the "extra point(s)" we have added) is often handy (we can easily extend some continuous functions from $X$ to its one-point compactification e.g., which is used in functional analysis etc) and intuitive (Riemann sphere for the complex plane e.g.). If a space has a compactification with a closed remainder (e.g. a finite one) then $X$ must have been a locally compact (as $X$ is then homeomorphic to an open subset of a compact (Hausdorff) space to start with.