On the determinant of a Toeplitz-Hessenberg matrix

determinantfactoriallinear algebramatrices

I am having trouble proving that

$$\det
\begin{pmatrix}
\dfrac{1}{1!} & 1 & 0 & 0 & \cdots & 0 \\
\dfrac{1}{2!} & \dfrac{1}{1!} & 1 & 0 & \cdots & 0 \\
\dfrac{1}{3!} & \dfrac{1}{2!} & \dfrac{1}{1!} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\dfrac{1}{(n-1)!} & \dfrac{1}{(n-2)!} & \dfrac{1}{(n-3)!} & \cdots & \dfrac{1}{1!} &1\\
\dfrac{1}{n!} & \dfrac{1}{(n-1)!} & \dfrac{1}{(n-2)!} & \dfrac{1}{(n-3)!} & \cdots & \dfrac{1}{1!}
\end{pmatrix}
=\dfrac{1}{n!}.
$$

Best Answer

Hint. In general, let $d_0=d_1=1$ and let $(a_k)_{k=1,2,\ldots}$ be any sequence of numbers. For every $n\ge2$, denote by $d_n$ the determinant of the $n\times n$ Toeplitz-Hessenberg matrix $$ \begin{pmatrix} a_1 &1 &0 &0 &\cdots &0\\ a_2 &a_1 &1 &0 &\cdots &0\\ a_3 &a_2 &a_1 &1 &\cdots &0\\ \vdots &\vdots &\vdots &\ddots &\ddots &\vdots\\ a_{n-1} &a_{n-2} &a_{n-3} &\cdots &a_1 &1\\ a_n &a_{n-1} &a_{n-2} &a_{n-3} &\cdots &a_1 \end{pmatrix}. $$ If one expands the determinant by the first column, one obtains $$ d_n=-\sum_{k=1}^n(-1)^ka_kd_{n-k}. $$

Related Question