On the alternating Euler sum $\sum_{n = 1}^\infty \frac{(-1)^n H_n H_{2n}}{2n + 1}$

closed-formeuler-sumsharmonic-numberspolylogarithmsequences-and-series

In trying to evaluate the integral given here, in a rather circuitous way, I stumbled upon the following alternating Euler sum

$$\sum_{n = 1}^\infty \frac{(-1)^n H_n H_{2n}}{2n + 1} = \frac{3 \pi}{8} \ln^2 2 + \frac{3 \pi^3}{64} + \frac{\mathbf{G}}{2} \ln 2 + 2 \operatorname{Im} \operatorname{Li}_3 (1 – i)$$

Here $H_n$ is the $n$th harmonic number, $\mathbf{G}$ Catalan's constant, $i$ the imaginary unit, while $\operatorname{Li}_3 (x)$ is the polylogarithmic function (trilogarithm) of order three.

As my approach was indirect, very long, and rather around-about, I am asking if a more direct approach employing real methods can be used to evaluate this sum.

Best Answer

We proved in this solution that

$$\mathcal{I}=\int_0^1\frac{\tan^{-1}(x)\ln(1+x^2)}{x(1+x)}dx=\frac{\pi^3}{96}-\frac{\pi}{8}\ln^2(2)\tag1$$

and we proved here that

$$\tan^{-1}x\ln(1+x^2)=-2\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{2n+1}x^{2n+1}\tag2$$

By $(2)$ we get

$$\mathcal{I}=-2\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{2n+1}\int_0^1\frac{ x^{2n}}{1+x}dx$$

Using the identity $$\int_0^1\frac{x^{2n}}{1+x}dx=\ln2+H_n-H_{2n}$$

it follows that

$$\mathcal{I}=-2\ln(2)\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{2n+1}-2\sum_{n=1}^\infty\frac{(-1)^nH_{2n}H_n}{2n+1}+2\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{2}}{2n+1}$$

$$=-2\ln(2)\mathcal{S}_1-2\mathcal{S}_2+2\mathcal{S}_3\tag3$$


For $\mathcal{S}_1$ and $\mathcal{S}_3$, we use the classical identity:

$$\sum_{n=1}^\infty(-1)^n f(2n)=\Re\sum_{n=1}^\infty i^n f(n)$$

Therefore

$$\mathcal{S}_1=\Re\sum_{n=1}^\infty i^n\frac{H_n}{n+1}=\Re\left\{\frac{\ln^2(1-i)}{i}\right\}=-\frac{\pi}{8}\ln(2)\tag4$$ where we used $\sum_{n=1}^\infty x^n\frac{H_n}{n+1}=\frac{\ln^2(1-x)}{x}$ which follows from integrating $\sum_{n=1}^\infty H_nx^n=-\frac{\ln(1-x)}{1-x}$.


Similarly,

$$\mathcal{S}_3=\Re\sum_{n=1}^\infty i^n\frac{H_n^2}{n+1}$$

Using the generating function

$$\sum_{n=1}^\infty x^{n}\frac{ H_n^{2}}{n+1}=\frac{6\operatorname{Li}_3(1-x)-3\operatorname{Li}_2(1-x)\ln(1-x)-\ln^3(1-x)-3\zeta(2)\ln(1-x)-6\zeta(3)}{3x}$$

it follows that

$$\mathcal{S}_3=\Re\left\{\frac{6\operatorname{Li}_3(1-i)-3\operatorname{Li}_2(1-i)\ln(1-i)-\ln^3(1-i)-3\zeta(2)\ln(1-i)-6\zeta(3)}{3i}\right\}$$

$$=\Im\left\{\frac{6\operatorname{Li}_3(1-i)-3\operatorname{Li}_2(1-i)\ln(1-i)-\ln^3(1-i)-3\zeta(2)\ln(1-i)-6\zeta(3)}{3}\right\}$$

$$=2\Im\{\operatorname{Li}_3(1-i)\}+\frac12\ln(2)\ G+\frac{3\pi}{16}\ln^2(2)+\frac{5}{96}\pi^3\tag5$$

Plug the results of $(4)$ and $(5)$ in $(3)$ we get

$$\mathcal{I}=4\Im\{\operatorname{Li}_3(1-i)\}+\ln(2)\ G+\frac{5\pi}{8}\ln^2(2)+\frac{5}{48}\pi^3-2\mathcal{S}_2\tag6$$

By $(1)$ and $(6)$ we get

$$\mathcal{S}_2=\sum_{n=1}^\infty\frac{(-1)^nH_{2n}H_n}{2n+1}=2\Im\{\operatorname{Li}_3(1-i)\}+\frac12\ln(2)\ G+\frac{3\pi}{8}\ln^2(2)+\frac{3}{64}\pi^3$$