On Auslander transpose and stable Hom module

commutative-algebraderived-functorshomological-algebra

For finitely generated modules $M,N$ over a Noetherian local ring $(R, \mathfrak m)$, define $$P_R(M,N):=\{f\in \text{Hom}_R(M,N): \exists n\ge 0 \text{ and } M\xrightarrow{g} R^n \xrightarrow{h} N \text{ such that } f=h\circ g\}.$$ Then I can prove easily that $P_R(M,N)$ is an $R$-submodule of $\text{Hom}_R(M,N)$. So define $\underline {\text{Hom}}_R(M,N):=\text{Hom}_R(M,N)/P_R(M,N)$.

Now for a minimal free resolution $F_1\xrightarrow{d_1} F_0 \xrightarrow{d_0} M\to 0$ , we define the Auslander transpose of $M$ to be $\text{Tr}(M):=\text{coker} \text { Hom}(d_1, R) $ (see Proving projective equivalence of Auslander Transpose). So $\text{Tr}(M)$ fits in an exact sequence $0\to M^*\xrightarrow{d_0^*} F_0^* \xrightarrow{d_1^*} F_1^* \to \text{Tr}(M)\to 0 $

My question is:

How to prove that
$$\underline {\text{Hom}}_R(M,N) \cong \text {Tor}^R_1(\text {Tr}(M),N)\ ?$$

Best Answer

Proposition 12.13 of Leuschke and Weigand's Cohen Macaulay Representations has a proof of this for general commutative rings.

Related Question