Number of cyclic subgroups of order $10$ in $\mathbb{Z}_{30}\oplus\mathbb{Z}_{120}$.

group-theory

Determine the number of cyclic subgroups of order $10$ in $\mathbb{Z}_{30}\oplus\mathbb{Z}_{120}$.

So I want to find all the possible generators for these subgroups which means I want to find all the elements of order $10$ in the group and then take out all the elements which are duplicating subgroups.

I think I have $14$ elements of order $10$. I tried to count the elements such that $\text{lcm}(\vert x\vert,\vert y\vert)=10$ where $x\in \mathbb{Z}_{30},y\in \mathbb{Z}_{120}$. I have $\{(1,10),(2,20),…,(12,120),(5,2),(2,5)\}$. The first $12$ all generate the same subgroup as $\langle i\cdot(1,10)\rangle=\langle(i\cdot 1,i\cdot10)\rangle$.

So I have 3 distinct cyclic subgroups.

Best Answer

Here $$10=|(a,b)|=\text{lcm}\{|a|,|b|\}$$ where $$|a| \in \{ 1,2,3,5,6,10,15,30\}$$ and $$|b| \in \{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120\}$$

  • Case(1): $|a|=1,|b|=10$ (we have $4$ elements)
  • Case(2): $|a|=2,|b|=5$ (we have $4$ elements)
  • Case(3): $|a|=2,|b|=10$ (we have $4$ elements)
  • Case(4): $|a|=5,|b|=10$ (we have $16$ elements)
  • Case(5): $|a|=10,|b|=1$ (we have $4$ elements)
  • Case(6): $|a|=10,|b|=5$ (we have $16$ elements)
  • Case(7): $|a|=5,|b|=2$ (we have $4$ elements)
  • Case(8): $|a|=10,|b|=2$ (we have $4$ elements)
  • Case(9): $|a|=10,|b|=10$ (we have $16$ elements)

Thus totally we have $$2(4+4+4+16)+16=56+16=72$$ elements of order $10$ and hence we have $\frac{72}{\phi(10)=4}=18$ cyclic subgroups of order $10$


Notation: $|x|$ denotes the order of $x$