Norm of the operator $(x_n)_n \mapsto (\sum_k a^k x_{n+k}/k!)_n$ in $\ell^1$

functional-analysisnormed-spacesoperator-theory

Let $\ell^1$ be the space of absolutely summable real sequences $(x_n)_{n\ge 1}$ with standard norm
$$
\|(x_n)_n\| = \sum_{n=1}^\infty |x_n|.
$$

Let $A$ be the operator in $\ell^1$ given by
$$
A(x_n)_n = \left(\sum_{k=0}^\infty \frac{a^k}{k!} x_{n+k} \right)_n
$$

for some constant $a > 0$. It is clear that $A$ is bounded, because
$$
\|A(x_n)_n\| = \sum_n \left| \sum_k \frac{a^k }{k!} x_{n+k} \right| \le \sum_k \frac{a^k}{k!} \sum_n |x_{n+k}| \le \|(x_n)_n\| \sum_k \frac{a^k}{k!} = \|(x_n)_n\| e^a
$$

and
$$
\|A\| \le e^a.
$$

What is the norm of $A$?

Best Answer

Hint: Let $(x_n)=\frac 1 N(1,1,..,1,0,0,...)$ where there are $N$ $1$'s. Then $\|A(x_n)\|=\frac 1 N \sum\limits_{k=1}^{\infty } \frac {a^{k}} {k!}(N-k) =\sum\limits_{k=1}^{\infty }\frac {a^{k}} {k!}(\frac {N-k} N )$. An Application of DCT shows that $\|A(x_n)\| \to e^{a}$ as $N \to \infty$. Hence $\|A\|=e^{a}$.