Norm of a bounded linear operator

functional-analysisreal-analysis

Let $D$ and $E$ be normed spaces. Let $L : D \rightarrow E$ be a linear operator which is bounded, i.e. there is some $C \geq 0$ such that $\Vert L x \Vert_{E} \leq C \Vert x \Vert_{D}$ for all $x \in D$. Clearly, for any $x \neq 0$ we have
$$
\frac{\Vert Lx \Vert_{E}}{ \Vert x \Vert_{D}} \leq C.
$$

Let us call the least such $C$ the norm of $L$ and denote by
$$
\Vert L \Vert := \sup_{ x \in D, \ x \neq 0} \frac{\Vert Lx \Vert_{E}}{ \Vert x \Vert_{D}}.
$$

Now how can we show the following equalities
$$
\Vert L \Vert = \sup_{\Vert x \Vert_{D} = 1} \Vert L x \Vert = \sup_{\Vert x \Vert_{D} \leq 1} \Vert L x \Vert
$$

I will henceforth omit writing the spaces $D$ and $E$ next to the norms. If we denote by $\alpha = \Vert x \Vert$ for some $x \in D$, $x \neq 0$ then we see that
$$
\Vert L x \Vert = \Vert L ( \alpha \alpha^{-1} x) \Vert = \alpha \Vert L (\alpha^{-1} x) \Vert \leq \alpha \sup_{ \Vert y \rVert = 1 } \Vert L y\rVert
\leq \alpha \sup_{ \Vert y \rVert \leq 1 } \Vert L y\rVert
$$

How can one proceed afterwards?

Best Answer

Then $\dfrac{\|Lx\|}{\|x\|}=\dfrac{\|Lx\|}{\alpha}\leq\sup_{\|y\|\leq 1}\|Ly\|$ and hence $\|L\|\leq\sup_{\|y\|\leq 1}\|Ly\|$.

Now for $\|y\|\leq 1$, wrtie $\|Ly\|=\dfrac{\|Ly\|}{\|y\|}\|y\|\leq\dfrac{\|Ly\|}{\|y\|}\leq\|L\|$, of course this inequality is trivial for $y=0$, then $\sup_{\|y\|\leq 1}\|Ly\|\leq\|L\|$.

Related Question