Norm of a bounded linear functional.

banach-spacesfunctional-analysisnormed-spaces

Let $X=(\mathbb R^2, \|.\|_3)$ be a real normed space, where $\|(x_1,x_2)\|_3=[|x_1|^3+|x_2|^3]^{1/3}$. How to find the norm of bounded linear functional $ax+by$?

I tried this way:
$|ax+by|\leq |a||x|+|b||y|\leq \max\{|a|,|b|\}(|x|+|y|)\leq\max\{|a|,|b|\}([|x|^3+|y|^3]^{1/3}+|y|)\leq \max\{|a|,|b|\}([|x|^3+|y|^3]^{1/3}+[|x|^3+|y|^3]^{1/3})= 2\max\{|a|,|b|\}([|x|^3+|y|^3]^{1/3})=2\max\{|a|,|b|\} \|(x,y)\|_3 $.
This implies $ax+by$ is bounded linear functional. Now how should I find the norm of this functional?

Best Answer

Hints: use the inequality $|ax+by| \leq (|x|^{3}+|y|^{3} )^{1/3} (|a|^{3/2}+|b|^{3/2} )^{2/3}$ (This is Holder's Inequality) to see that the norm of the functional is less than or equal to $(|a|^{3/2}+|b|^{3/2} )^{2/3}$. To show that the the norm is exactly equal to this number take $x=\pm t|a|^{1/2},y=\pm t|b|^{1/2}$ where $t =\frac 1 {\|(|a|^{1/2},|b|^{1/2})\}\|}$. (In the first term $\pm$ stands for $1$ if $a >0$, $-1$ otherwise. Similarly choose $\pm$ sign in the second term based on the sign of $b$).