Non-linear optimization problem using Lagrange’s method/K.K.T. conditions

convex optimizationkarush kuhn tuckerlagrange multipliernonlinear optimizationoperations research

We are given the following problem:

$$\text{minimize }
2x_1^2 + x_2^2 + 3x_3^2
\text{ subject to }
x_1+x_2+x_3=10,
x_1\le5,
\text{ and }
x_1,x_2,x_3\ge0$$

I understand that I have to check all possible combinations for $\lambda_1$ and $\lambda_2$ and then choose the one that matches the conditions. I am pretty sure that the correct one is $\lambda_1\gt0, \lambda_2=0$, however I cannot prove it.

This is my progress so far:

$L(x_1, x_2, x_3,z_1;λ_1, λ_2)=2x_1^2+x_2^2+3x_3^2+λ_1(x_1+x_2+x_3-10)+λ_2(x_1+z_1-5)$

K.K.T. Conditions:

i. $4x_1+λ_1+λ_2=0, 2x_2+λ_1=0, 6x_3+λ_1=0$

ii. $x_1+x_2+x_3=10, x_1\le5$

iii. $λ_1\ge0, λ_2\ge0$

iv. $λ_2(x_1-5)=0$

Best Answer

The KKT conditions are \begin{align} 4x_1+\lambda_1+\lambda_2 &=0\\ 2x_2+\lambda_1 &= 0\\ 6x_3+\lambda_1 &= 0\\ x_1+x_2+x_3 &= 10\\ x_1 &\le 5 \\ x_i &\ge 0 \\ \lambda_2 &\ge 0 \\ \lambda_2(x_1-5) &= 0\\ \end{align} The complementary slackness constraint implies two cases: $\lambda_2=0$ or $x_1=5$. The first case yields solution $x=(30/11,60/11,20/11)$, with objective value $600/11$. The second case yields solution $x=(5,15/4,5/4)$, with objective value $275/4>600/11$.