Monte Carlo double integral over surface of $|x|+|y| \leq 1$

monte carlo

$\iint_{|x|+|y|\le1}\!x^2\,dxdy$

I am supposed to calculate this by using Monte Carlo integration. Can anyone give basic hints or directions? I know the idea behind the Monte Carlo integration method but my brain can't seem to be able to grasp any straw at how to solve this.

Best Answer

Enclose your integration in $\displaystyle{\left[-1,1\right)^{\,2}}$. The Monte-Carlo integration becomes $\left(~overline\ \overline{\phantom{AAA}}\mbox{means average with an uniform distibution over}\ \left[-1,1\right)^{\,2}~\right)$ \begin{align} S_{N} & = \sum_{i = 1}^{N}x_{i}^{2} \left[\vphantom{\Large A}\left\vert x_{i}\right\vert + \left\vert y_{i}\right\vert \leq 1\right] \\[2mm] \overline{S_{N}} & = N\ \overline{x^{2} \left[\vphantom{\Large A}\left\vert x\right\vert + \left\vert y\right\vert \leq 1\right]} = N\int_{-1}^{1}\int_{-1}^{1}{1 \over 4} \left[\vphantom{\Large A}\left\vert x\right\vert + \left\vert y\right\vert \leq 1\right]x^{2} \,\mathrm{d}x\,\mathrm{d}y \\[5mm] & \implies \int_{-1}^{1}\int_{-1}^{1} \left[\vphantom{\Large A}\left\vert x\right\vert + \left\vert y\right\vert \leq 1\right]x^{2} \,\mathrm{d}x\,\mathrm{d}y = 4\,{\overline{S_{N}} \over N} \approx \bbox[10px,#ffd,border:1px groove navy] {4\,{S_{N} \over N}} \end{align}

The following code is a $\texttt{javascript}$ script which can be run in a terminal with $\texttt{node.js}$:

"use strict";
const ITERATIONS = 10000;
let i = 0, theSum = 0, x = null, y = null;

while (i < ITERATIONS) {
      x = 2.0*Math.random() - 1.0;
      y = 2.0*Math.random() - 1.0;
      if (Math.abs(x) + Math.abs(y) <= 1.0) theSum += x*x;
      ++i;
}

console.log(4.0*(theSum/ITERATIONS));

A typical "run" yields $\bbox[10px,#ffd,border:1px groove navy]{\displaystyle 0.3302123390009306}$. The exact result is $\bbox[10px,#ffd,border:1px groove navy] {\displaystyle{1 \over 3}}$.