MLE and standard error of $\lambda$ given $X \sim \exp(\lambda)$

maximum likelihoodstandard error

Suppose $x_1 … x_n$ are an iid sample from the exponential distribution with density:
$$
p(x) = \lambda^{-1}e^{-\frac{x}{\lambda}}.
$$

Derive the MLE for $\lambda$ and its standard error.

My calculation:

$$\begin{align}L(\lambda;x) &= \prod_{i=1}^nf(x_i;\lambda) = \lambda^{-n}e^{-\frac{\sum_{i=1}^nx}{\lambda}} \\ &= \log L(\lambda;x) = –
n\log(\lambda) -\frac{\sum_{i=1}^nx}{\lambda} \\ &= \frac{\partial \log L(\lambda;x)}{\partial \lambda} \implies \lambda = \bar{x} \\
&=\frac{\partial^2 \log L(\lambda;x)}{\partial \lambda} = \frac{n}{\lambda^2}-\frac{2\sum_{i=1}^nx_i}{\lambda^3} \end{align} $$

By taking the fisher information:

$$I(\hat{\lambda}) = -E\left(\frac{n}{\lambda^2}-\frac{2\sum_{i=1}^nx_i}{\lambda^3} \right)=-\frac{2n}{\lambda^2}$$

If I have my calculations correct, then I cannot see how I can get the standard error if $se = I(\hat{\lambda})^{-\frac{1}{2}}$

Best Answer

Obviously, you can't have negative information.

Your likelihood is $$\mathcal L(\lambda \mid \boldsymbol x) \propto \lambda^{-n} e^{-n \bar x/\lambda} \mathbb 1(x_{(1)} \ge 0)$$ where I have written this in terms of the sufficient statistic $\bar x$. Then the log-likelihood is $$\ell(\lambda \mid \boldsymbol x) = -n \log \lambda - \frac{n \bar x}{\lambda},$$ and $$\frac{\partial \ell}{\partial \lambda} = -\frac{n}{\lambda} + \frac{n\bar x}{\lambda^2}.$$ The second derivative is $$\frac{\partial^2 \ell}{\partial \lambda^2} = \frac{n}{\lambda^2} - \frac{2n \bar x}{\lambda^3}.$$ Then your Fisher information is $$I(\hat \lambda) = - \left( \frac{n}{\lambda^2} - \frac{2n \operatorname{E}[\bar x]}{\lambda^3} \right) = - \frac{n}{\lambda^2} + \frac{2n \lambda}{\lambda^3} = \frac{n}{\lambda^2}.$$

That said, the standard error of $\hat \lambda$ is simply $$\operatorname{SE}(\hat \lambda) = \sqrt{\operatorname{Var}[\bar x]} \overset{\text{iid}}{=} \sqrt{\frac{\operatorname{Var}[X]}{n}} = \sqrt{\frac{\lambda^2}{n}} = \frac{\lambda}{\sqrt{n}}.$$ There is no need to calculate the Fisher information.

Related Question