Probability – Determining the Mixed Moment of a Finite Weibull Distribution

expected valueprobabilityprobability theorystatistics

I need help with the following please.
let X be weibull distributed with the density(x and both parameters are positive and nonzero):
$$f(x)=\frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})1(x>0)$$
I want to show that for $p,q\geq0$
$$E[X^p |log(X)|^q]<\infty$$

I already tried to apply Jensen but I think the function is not concave, I also tried splitting the integral to get rid of the absolute value und use some inequalities but I just get lost somewhere. In a textbook I read that this holds since weibull distrib hast an exponentially small tail but I don’t understand this. Hope there is a different way to solve this problem. Thx in advance

Best Answer

For $M>1$, $$\int_{M}^{\infty}x^p|log(x)|^qf(x)dx$$ $$=\int_{M}^{\infty}x^p(log(x))^q \frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})dx$$ Now, $$\lim_{x \rightarrow\infty}\frac{x^p(log(x))^q \frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})} {x^{p+1}\frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})}=0$$
Therefore, for sufficiently large $M$, we have
$$\int_{M}^{\infty}x^p(log(x))^q \frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})dx \le \int_{M}^{\infty}x^{p+1}\frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})dx$$ $$\le \int_{0}^{\infty}x^{p+1}\frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})dx=\alpha^{\frac{1+p}{\beta}}\Gamma\left(\frac{\beta+p+1}{\beta}\right)$$

Similarly, for $\epsilon>0$ sufficiently close to 0,
$$\int_{0}^{\epsilon}x^p(-log(x))^q \frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})dx \le \int_{0}^{\epsilon}\frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})dx$$ $$\le \int_{0}^{\infty}\frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})dx=1$$

because
$$\lim_{x \rightarrow0^+}\frac{x^p(-log(x))^q \frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})} {\frac{\beta}{\alpha}x^{\beta-1}exp(-\frac{x^{\beta}}{\alpha})}=0$$

Then, just break up the integral into 3 pieces to show the whole integral is finite.