Minimum value of $\frac{x^4+5x^2+7}{x^2+3}$

a.m.-g.m.-inequalityalgebra-precalculusmaxima-minimaoptimization

Minimum value of $$f(x)=\frac{x^4+5x^2+7}{x^2+3}$$

we have $f(x)$ as
$$f(x)=(x^2+3)+\frac{1}{x^2+3}-1$$

Now by $AM \gt GM$ we have

$$(x^2+3)+\frac{1}{x^2+3} \gt 2$$

But equality cannot occur since $$x^2+3 \ne \frac{1}{x^2+3}$$

But my question is without using calculus is there any way to find minimum using AM, GM?

Best Answer

As an alternative, using your idea for decomposition, by Rearrangement inequality with

  • $(a_1,a_2)=(\frac13,\frac{1}{(x^2+3)})$
  • $(b_1,b_2)=\left(3(x^2+3),1\right)$

we have that

$$a_1b_1+a_2b_2=\frac13\cdot 3(x^2+3)+\frac{1}{(x^2+3)}\cdot 1= x^2+3+\frac{1}{(x^2+3)}\ge a_1b_2+a_2b_1=$$

$$=\frac13\cdot 1 +\frac{1}{(x^2+3)}\cdot 3(x^2+3)=\frac13+3=\frac{10}3$$

with equality for

$$a_1=a_2 \iff \frac13=\frac{1}{(x^2+3)}\iff x=0$$

therefore

$$f(x)=(x^2+3)+\frac{1}{x^2+3}-1\ge \frac{10}3-1=\frac 73$$

with the minimum attained at $x=0$.