Minimum value of $\frac{ax^2+by^2}{\sqrt{a^2x^2+b^2y^2}}$

algebra-precalculusconstraintslagrange multiplieroptimization

If $$x^2+y^2=1$$

Prove that Minimum value of $$f(x,y)=\frac{ax^2+by^2}{\sqrt{a^2x^2+b^2y^2}}$$ is
$$\frac{2\sqrt{ab}}{a+b}$$

My try:

I used basic Trigonometry:

Let $x=\cos t$ and $y=\sin t$

Then we get $$f(x,y)=g(t)=\frac{a\cos^2 t+b\sin^2 t}{\sqrt{a^2\cos^2 t+b^2\sin^2 t}}$$

Now let $$p=\cos(2t)$$

then we get a single variable function as:

$$h(p)=\frac{1}{\sqrt{2}}\frac{(a+b)+p(a-b)}{\sqrt{a^2+b^2+p(a^2-b^2)}}$$
where $p \in [-1, 1]$

Now we can find critical point and find minimum.

Is there a better approach, i tried lagrange multipliers but very tedious

Best Answer

$$(a+b)(ax^2+by^2)=p^2+ab$$ where $p=\sqrt{a^2x^2+b^2y^2}$

Now assuming $ab>0,$

$$\dfrac{p^2+ab}p\ge2\sqrt{p\cdot\dfrac{ab}p}$$ using AM-GM inequality