Minimum value of $\frac{4}{4-x^2}+\frac{9}{9-y^2}$

algebra-precalculusderivativesmaxima-minima

Given $x,y \in (-2,2)$ and $xy=-1$

Minimum value of $$f(x,y)=\frac{4}{4-x^2}+\frac{9}{9-y^2}$$

My try:

Converting the function into single variable we get:

$$g(x)=\frac{4}{4-x^2}+\frac{9x^2}{9x^2-1}$$

$$g(x)=\frac{4}{4-x^2}+1+\frac{1}{9x^2-1}$$

Using Differentiation we get:

$$g'(x)=\frac{8x}{(4-x^2)^2}-\frac{18x}{(9x^2-1)^2}$$

$$g'(x)=2x\left(\frac{4(9x^2-1)^2-9(4-x^2)^2}{(4-x^2)^2(9x^2-1)^2}\right)$$

$$g'(x)=70x\frac{9x^4-4}{(4-x^2)^2(9x^2-1)^2}=0$$

So the critical points are:

$x=0, x=\pm \sqrt{\frac{2}{3}}$

But $x \ne 0$ since $xy=-1$

$$g'(x)=70x \frac{(3x^2-2)(3x^2+2)}{(4-x^2)^2(9x^2-1)^2}$$

By using derivative test we get Minimum occurs when $x=\pm \sqrt{\frac{2}{3}}$

Hence $$x^2=\frac{2}{3}, y^2=\frac{3}{2}$$

Min value is $$\frac{4}{4-\frac{2}{3}}+\frac{9}{9-\frac{3}{2}}=\frac{12}{5}$$

Is there any other approach?

Best Answer

Using $xy = -1$, we can put the fractions over a common denominator as $${4\over{4 - x^2}} + {9\over{9 - y^2}} = {{72 - 9x^2 - 4y^2}\over{37 - 9x^2 - 4y^2}} = 1 + {35\over{37 - (9x^2 + 4y^2)}}$$ So we need to minimize $9x^2 + 4y^2$. Since $9x^2 \times 4y^2$ is constant, the minimum occurs when $9x^2 = 4y^2$, i.e. $9x^2 = 4/x^2$, which gives the same result as you found.