Minimize $(x+y)(y+z)(z+x)$ given $xyz(x+y+z) = 1$

a.m.-g.m.-inequalityinequalitysymmetric-polynomialsuvw

$x,y,z$ are positive reals and I am given $xyz(x+y+z) = 1$. Need to minimize $(x+y)(y+z)(z+x)$. Here is my approach.

Using AM-GM inequality

$$ (x+y) \geqslant 2 \sqrt{xy} $$
$$ (y+z) \geqslant 2 \sqrt{yz} $$
$$ (z+x) \geqslant 2 \sqrt{zx} $$

So, we have

$$ (x+y)(y+z)(z+x) \geqslant 8xyz $$

Also, I got

$$ \frac{x+y+z+(x+y+z)}{4} \geqslant \bigg[ xyz(x+y+z) \bigg] ^{1/4} $$

$$ \therefore x+y+z \geqslant 2 $$

But, I am stuck here. Any hints ?

Best Answer

$(x+y)(y+z)(z+x)=(z+x)(y(x+y+z)+xz)=(\frac{1}{zx}+zx)(x+z)$

now we can use $$\frac{1}{zx}+zx\ge 4{(\frac{1}{27{(xz)}^2})}^{1/4}$$

(HINT:$\frac{1}{zx}=\frac{1}{3zx}+\frac{1}{3zx}+\frac{1}{3zx}$)

also we can use $$x+z\ge 2\sqrt{xz}$$

Multiplying we get $$(x+y)(y+z)(z+x)\ge \frac{8}{3^{3/4}}$$