Minimize $x_1 + x_2$ subject to inequality constraints

nonlinear optimizationoptimization

Given $a_1$ and $a_2$ such that $a_1\geq a_2\geq1$, solve the following problem in variables $x_1, x_2, y$

$$\begin{array}{ll} \text{minimize} & x_1+x_2\\\text{subject to} & x_1x_2\geq a_1,\\&\frac{x_1x_2}{y}\geq a_2,\\&x_1\geq y\geq x_2>0\end{array}$$


My attempt:

First rewrite the problem:

\begin{array}{ll} \text{minimize} & x_1+x_2\\ x_1,x_2,y\\\text{subject to} & x_1x_2\geq a_1,\\&x_1x_2\geq ya_2,\\&x_1\geq y,\\&y\geq x_2,\\&x_2>0.\end{array}
Lagrange multiplier:

$L(x_1,x_2,y,\lambda_i)=x_1+x_2+\lambda_1(a_1-x_1x_2)+\lambda_2(ya_2-x_1x_2)+\lambda_3(y-x_1)+\lambda_4(x_2-y)-\lambda_5x_2.$

$\begin{bmatrix}\frac{\partial{L}}{\partial{x_1}} \\ \frac{\partial{L}}{\partial{x_2}} \\ \frac{\partial{L}}{\partial{y}}\end{bmatrix} = \begin{bmatrix}1-\lambda_1x_2-\lambda_2x_2-\lambda_3 \\ 1-\lambda_1x_1-\lambda_2x_1+\lambda_4-\lambda_5 \\ \lambda_2a_2+\lambda_3-\lambda_4\end{bmatrix}\Longrightarrow\begin{cases} x_2=\frac{1+\lambda_3}{\lambda_1+\lambda_2}, \\ x_1=\frac{1+\lambda_4-\lambda_5}{\lambda_1+\lambda_2},\\\lambda_4=a_2\lambda_2+\lambda_3. \end{cases}$

$g(\lambda) = \inf_{x_1,x_2,y} L(x_1,x_2,y,\lambda_i) = \frac{1+\lambda_4-\lambda_5}{\lambda_1+\lambda_2}+\frac{1+\lambda_3}{\lambda_1+\lambda_2}+\lambda_1(a_1-\frac{1+\lambda_4-\lambda_5}{\lambda_1+\lambda_2}\frac{1+\lambda_3}{\lambda_1+\lambda_2})-\lambda_2\frac{1+\lambda_4-\lambda_5}{\lambda_1+\lambda_2}\frac{1+\lambda_3}{\lambda_1+\lambda_2}-\lambda_3\frac{1+\lambda_4-\lambda_5}{\lambda_1+\lambda_2}+\lambda_4\frac{1+\lambda_3}{\lambda_1+\lambda_2}-\lambda_5\frac{1+\lambda_3}{\lambda_1+\lambda_2}.$

Dual problem:

\begin{array}{ll} \text{maximize} & g(\lambda) \\\quad \lambda\\ \text{subject to} & \lambda_i \geq 0,\\&\lambda_4=a_2\lambda_2+\lambda_3. \end{array}

Best Answer

We want to minimize $x_1+x_2$ and $x_1,x_2 \ge 0$, so we have to get close to origin as much as possible. Consider the problems in $x_1-x_2$ plane, first we have to find the feasible region (I am assuming $a_1,a_2\ge0$):

enter image description here

The blue curve is the boundary of the first inequality $x_1 x_2 \ge a_1$, the feasible region is the region above this curve. The dashed-line orange curves are the second inequality $x_1x_2\ge ya_2$ for different values of $y$, again the area above these curves are the feasible region. This means if $y\le\frac{a_1}{a_2}$, we can ignore the second inequality, otherwise (if $y\ge\frac{a_1}{a_2}$) we can ignore the first inequality. The purple vector shows the direction of movement of curves as we increase $y$. Then we have the third inequality $x_1 \ge y$ which has the boundary of green line, our answer is in the right hand side of green line. And finally we have the forth inequality $x_2 \le y$ with boundary of grey line, our answer is in lower half of this line (below grey line).

With these information at hand, we see that the inequality $x_1\ge y$ must become active at solution point, this means the slackness condition $\lambda_4(y-x_1)=0$ is equivalent to $x_1=y$. Substituting this in the primal, we get three inequalities $x_2 \ge \frac{a_1}{y}$, $y\ge x_2$ and $x_2 \ge a_2$ and the objective is $y+x_2=x_1+x_2$.

Back to primal. Now consider on one hand we have we have $y\ge x_2$ and $x_2 \ge \frac{a_1}{y}$ which means $y \ge \frac{a_1}{y}$ or $y \ge \sqrt{a_1}$. On the other hand we have $y\ge x_2$ and $x_2 \ge a_2$which means $y\ge a_2$. Thus we obtain two main conditions that solves everything: $y \ge \sqrt{a_1}$ and $y\ge a_2$.

Finally if $a_2 \le \sqrt{a_1}$ the solution is $x_1=y=x_2=\sqrt{a_1}$. Otherwise if $\sqrt{a_1} \le a_2$ the solution is $x_1=x_2=y=a_2$. And now we can see the funny part, both $x_1 \ge y$ and $y \ge x_2$ are tight so from start we could have considered the slackness conditions $\lambda_3(y-x_1)=0$ and $\lambda_4(x_2-y)=0$ to be active i.e. $x_1=x_2=y$ to be true and get the solution.